The Grid Analysis and Display System

GrADS

V151.12

Brian Doty

doty@cola.iges.org

10 September, 1995

Manual reformatted and updated by:

Tom Holt,

Climatic Research Unit,

University of East Anglia, Norwich, UK.
t.holt@uea.ac.uk

and

Mike Fiorino

Program for Climate Model Diagnosis and Intercomparison
Lawrence Livermore National Laboratory L-264
Livermore, CA 94551

fiorino@typhoon.lInl.gov

Table of Contents

TABLE OF CONTENTS
ABSTRACT

SUGGESTIONS

HOW TO USE THIS MANUAL
INTRODUCTORY GUIDE

1.0 STARTING AND QUITTING GrADS
Help
Diagnostics at startup
Startup options

Leaving GrADS
2.0 BASIC CONCEPT OF OPERATION
3.0 TUTORIAL

4.0 USING GrADS DATA FILES
Default file extension

Introduction to Gr ADS Data Sets
Gridded Data Sets
The options record in the Data Descriptor File
Station Data Sets
Station Data Descriptor File
STNMAP Utility

Creating Data Files
Examples of Creating a Gridded Data Set
Examples of Creating Station Data Sets

5.0 DIMENSION ENVIRONMENT

6.0 VARIABLE NAMES

10

11

12

13
13
13
13

14

15

16

21
21

21
22
27
28
29
30

30
30
31

34

35

7.0 EXPRESSIONS

8.0 DEFINED VARIABLES
Defining new variables

Undefining new variables

9.0 DISPLAYING DATA PLOTS
Displaying your data

Clearing the Display

10.0 GRAPHICS OUTPUT TYPES

11.0 ANIMATION

12.0 PAGE CONTROL
Real and virtual pages

Controlling the plot area

13.0 GRAPHICS PRIMITIVES
Drawing commands
Controlling drawing commands

Plot clipping

14.0 HARDCOPY OUTPUT
Producing a GrADS print file

Printinga GrADSprint file

15.0 EXEC COMMAND

16.0 USING STATION DATA
Operating on station data

Station Models

17.0 INTRODUCTION TO GrADS SCRIPTS

36

37
37

39

40
40

40

41

43

44

45
45
46

47

48

49

50
50

51

52

What scripts can do
Running scripts
Automatic script execution

Storing GrADS scripts

18.0 ADDITIONAL FACILITIES
Shell commands
Command line optionson GrADS utilities
Reinitialisation of GrADS

Displaying GrADS M etafiles

REFERENCE SECTION

19.0 GRAPHICS OPTIONS

1-D Graphics
Line Graphs (gxout = line):
Bar Graphs (gxout = bar)
Error Bars (gxout = errbar)
Line Graph Shading (gxout = linefill)

2-D Gridded Graphics
Line Contour Plots (gxout = contour)

Shaded or Grid Fill Contour Plots (gxout = shaded or grfill)

Grid Value Plot (gxout = grid)
Vector Plot (gxout = vector)
Wind Barb Plot (gxout = barb)
Scatter Plot (gxout = scatter)

Specific Value Grid Fill Plot (gxout = fgrid)

Streamline Plot (gxout = stream)

1-D Station Graphics

Plot time series of wind barbs at a point (gxout = tserbarb)
Plot time series of weather symbols at a point (gxout = tserwx)

2-D Station Graphics
Plot station values (gxout = value)
Plot wind barb at station (gxout = barb)

Plot weather symbol at station (gxout = wxsym)

Plot station model (gxout = model)

Other Display Options

Find closest station to x,y point (gxout = findstn)

Write data to file (gxout = fwrite)

Display information about data (gxout = stat)

52
52
52

53

54

54

54

55

56

57

57
57
57
58
58

58
58
60
61
61
62
62
63
63

64

64
64
64
65
65

66
66
66
66

Set Commandsto Control Graphics Display
Set range for plotting 1-D or scatter plots

To control log scaling when the Z dimension is plotted on any plot:

To control axis orientation:

To control axis labelling

To control displayed map projections
To control map drawing:

To control annotation

To control console display

To control the frame

To control logo display

20.0 GrADS FUNCTIONS

Averaging Functions
aave
amean
ave
mean
vint

Filtering Functions
smth9

Finite Difference Functions
cdiff

Grid Functions
const
maskout
skip

Math Functions
abs
acos
asin
atan2
coS
exp
gint
gint(expr)
log
logl0
pow
sin
sgrt
tan

M eteorological Functions
tvrh2q
tvrh2t

Special Purpose Functions
tloop

67
67
67
68
68
69
69
70
70
70
70

71

71
71
72
72
74
74

75
75

75
75

76
76
77
78

78
78
78
79
79
79
79
79
79
79
79
80
80
80
80

80
80
81

81
81

Station Data Functions
gr2stn
oacres
sthave
sthmin
stnmax
Vector Functions
heurl
hdivg
mag

21.0 USER DEFINED FUNCTIONS (UDFS):
Overview of User Defined Functions
The user defined function table
Format of the function data transfer file
Format of the function result file

Example: Linear Regression Function

22.0 FURTHER FEATURES OF GRADS DATA SETS
File and time group headers
Variable format/structur e contr ol
Multiplefiletime series

Enhanced data formats and structures

23.0 PROGRAMMING GRADS: USING THE SCRIPTING LANGUAGE

Overview of the Scripting L anguage

Elements of the Language
Variables
String variables
Predefined variables
Global scripting variables
Compound scripting variables
Operators
Expressions
Flow control
IF Blocks
WHILE Blocks
Functions
Assignment
Standard input/output

83
83
83
85
85
85
86
86

86
86

88
88
88
89
91

91

94
%4
%4
99

101

102

102

102
103
103
103
103
103
104
105
106
106
106
107
108
108

Sending Commands to GrADS 108

Intrinsic Functions 109
String functions 109
Input/output functions 109

Commandsthat complement the scripting language 110
Widgets 112
On screen buttons 113
Rubber banding 113
Examples 114
24.0 USING MAP PROJECTIONS IN GrADS 115
Using Preprojected Grids 115

Polar Stereo Preprojected Data (coarse accuracy for NMC Models) 116

Lambert Conformal Preprojected Data 117

NMC Etamodel (unstaggered grids) 120

NMC high accuracy polar stereo for SSM/| data 122

CSU RAMS Oblique Polar Stereo Grids 124

Pitfalls when using preprojected data 128

GrADS Display Projections 128
Summary and Plans 129
APPENDICES 130
APPENDIX A: SUPPLEMENTARY SCRIPTS 131
1) Correlation between two horizontal grids (corr.gs) 131
2) GrADS Color Table Script (cmap.gs) 131
3) Font Display (font.gs) 134
4) Plot a color bar (cbar.gs) 134
5) Stack commands and display on flush (stack.gs) 134
6) Draw all WX Symbols (wxsym.gs) 134
7) (draw.gs) 134
8) (string.gs) 134
9) (loop.gs) 134
10) (bsamp.gs) 135
11) Expanded Color Bar Script (cbarn.gs) 135

12) Computing Standard Deviation (sd.gs)

13) Draw an x,y Plot (xyplot.gs)

APPENDIX B: USING GRIB DATA IN GRADS
Gribscan
File options:
Processing Options:
Specia note to NMC users
Display options:
Some examples:

Gribmap

APPENDIX C: COMMAND LINE EDITING AND HISTORY UNDER UNIX

APPENDIX D: 32-BIT IEEE FLOATS ON A CRAY

APPENDIX E: USING GRADS ON THE IBM PC
Hardwar e consider ations
Some limitations of the PC version:
Data setsfrom other platforms
Printing on non-postscript printers

Incorporating GrADS picturesinto PC software

APPENDIX F: GRADS-RELATED NETWORK FACILITIES
ftp Sites
Listserver

WWW Sites

135

135

136
136
136
136
137
137
137

138

142

144

145
145
145
145
146

146

147
147
147

147

Abstract

The Grid Analysis and Display System (GrADY) is an interactive desktop tool that is currently in use
worldwide for the analysis and display of earth science data. GrADS isimplemented on all
commonly available UNIX workstations and DOS based PCs, and is freely distributed over the
Internet. GrADS provides an integrated environment for access, manipulation, and display of earth
science data.

GrADS implements a 4-Dimensional data model, where the dimensions are usually latitude,
longitude, level, and time. Each data set islocated within this 4-Dimensional space by use of a data
description file. Both gridded and station data may be described. Gridded data may be non-linearly
spaced; Gaussian grids and variable resolution ocean model grids are directly supported. The
internal data representation in afile may be either binary or GRIB.

Since each data set islocated within the 4-D data space, intercomparison of disparate data setsis
greatly facilitated. Operations may be performed between data on different grids, or between gridded
and observational data. Data from different data sets may be graphically overlaid, with correct spatial
and time registration.

The user accesses data from the perspective of the 4-D datamodel. A dimension environment is
described by the user as a desired subset of the 4-D space. Datais accessed, manipulated, and
displayed within this subset.

Operations may be performed on the data directly, and interactively, by entering FORTRAN-like
expressions at the command line. A rich set of built-in functions are provided. In addition, users may
add their own functions as external routines written in any programming language. The expression
syntax allows complex operations that range over very large amounts of data to be performed with
simple expressions.

Once the data have been accessed and manipulated, they may be displayed using a variety of
graphical output techniques, including line, bar, and scatter plots, as well as contour, shaded contour,
streamline, wind vector, grid box, shaded grid box, and station model plots. Graphics may also be
output in PostScript format for printing on monochrome or color PostScript printers. The user has
wide control over all aspects of graphics output, or may choose to use the geophysically intuitive
defaults.

A programmable interface is provided in the form of an interpreted scripting language. A script may
display widgets as well as graphics, and take actions based on user point-and-clicks. Quite
sophisticated data graphical interfaces can, and have, been built. The scripting language can aso be
used to automate complex multi-step calculations or displays. GrADS can be run in a batch mode,
and the scripting language facilitates using GrADS to do long overnight batch jobs.

Development plans for 1995 include a Microsoft Windows implementation, support for
geographically registered image data, and development of an interface to BUFR data sets. In
addition, we plan to implement a number of user requested features, such as arbitrary vertical cross
sections, an interface to the NetCDF data storage package, and an enhanced point-and-click help
facility.

Suggestions

Please forward any suggestions you have for improving GrADS to me doty@cola.iges.org. | am
aways interested in hearing what you like and don’t like about GrADS, and am always looking for
ways to improve it.

We also recommend that you joint the gradsusr listserver described in Appendix F. Thisforumis
also monitored by the GrADS development community and is another channel form making
suggestions.

10

How to use this Manual

This manual is divided into three sections:

 Introductory Guide
» Reference Section
« Appendices

Introductory Guide

The Introductory Guide provides a conceptual framework within which the more detailed information
contained in subsequent sections can be absorbed as needed. Thus, this section contains most of the
information needed to run GrADS at arudimentary level. However, it is not designed to stand alone
and userswill certainly need to refer to some of the material in the Reference Section almost
immediately.

Reference Section

The first two chapters in this section contain detailed descriptions of all the options available for
graphical display of data, followed by areference to GrADS functions. Both these chapters are
organised by functional category. This enables users to decide what they want to do and then quickly
refer to all the options available to them. The remaining chaptersin this section provide information
for more advanced use of GrADS and a deeper understanding of the processes described in the
Introductory Guide.

Appendices

The appendices contain information considered not immediately relevant to earlier chapters. This
includes some platform-specific information and ancillary material which could reduce the time taken
to become familiar with GrADS facilities. All users are advised to browse the appendices before
using GrADS.

Using the Manual

Instead of an index, this manual uses a detailed Table of Contentsto help find information. Users
are recommended to refer to thisif they are unsure how to do something. We have attempted to
organise the manual in afunctional manner to reduce the time spent reading irrelevant information. It
is suggested that new users should read the first three chapters of the Introductory Guide, and then
experiment with the sasmple data file described in Chapter 3 Tutorial before using GrADS on your
own data. Y ou should then examine the sample data description files listed in Chapter 4 Using
GrADS Data Files. Following theinstructions in this chapter, it should be afairly simple matter to
construct atest data description file for asmall sample set of data. This can then be experimented on
using GrADS by referencing the appropriate chapters and gradually expanding your awareness of the
capabilities of GrADS.

11

Introductory Guide

12

1.0 Starting and Quitting GrADS

GrADS is started by entering the command: grads

Before initialising the graphics output environment, GrADS will prompt for landscape or portrait
mode. Landscapeis 11 x 8.5 inches (usually what you want). Portrait is 8.5 x 11 inches, primarily
used for producing vertically oriented hardcopy output. The actual size of the window will not, of
course, be 11 x 8.5inches (or 8.5 x 11 inches), but instead will be whatever size you chose by using
your workstation’ s window manager. But GrADS will treat the window asif it were one of the above
sizes, so it is best to size the window with approximately the proper aspect ratio. This can be done
using the window manager or from GrADS using the command:

Set xsizexy
which resizes the window to X,y pixels.

After answering this prompt, a separate graphics output window will be opened (but not on PCs).
Y ou may move or resize thiswindow at any time.

Y ou will enter GrADS commands in the text window from where you started GrADS. Graphics
output will appear in the graphics window in response to the commands you enter. Y ou will thus
need to make the text window the "active" window; the window that receives keyboard input.

Help

Typing help at the GrADS command prompt gives a summary list of operations essential to do
anything in GrADS. Thisisintended to jog memory rather than provide an exhaustive help facility.
If the GrADS manual is not available, you can obtain info on most command parameters by typing
the command on its own. Alternatively, we are setting up comprehensive documentation intended to
be used as alocal Web facility.

Diagnostics at startup

When you start GrADS you get platform specific diagnostics, for example:

GX Package Initialization: Size=118.5
111 32-bit BIG ENDIAN machine version
ga>

The ! line tells you that this version is 32-bit (i.e., data are 32-bit) and it was compiled for abig
endian machine (the Sun in this case). On the Cray you get...

1111 64-BIT MACHINE VERSION (CRAYYS)

Startup options

Y ou may specify the following options as arguments to the 'grads’ command when GrADS is started:

b Rungradsin batch mode. No graphics output window is opened.

| Rungradsin landscape mode. The Portrait vs. Landscape question is not asked.

p Rungradsin portrait mode.

¢ Execute the supplied command as the 1¥ GrADS command after GrADS is started.

13

An example:
grads-c"run profilegs’

These options may be used in combinations. For example:
grads-blc " run batch.gs"

Would run grads in batch mode, using landscape orientation (thus no questions are asked at startup);
and execute the command:

"batch.gs" upon startup.

Leaving GrADS

To leave GrADS, enter the command:

quit

14

2.0 Basic Concept of Operation

When you have successfully installed and started GrADS, you'll be confronted with two windows
a terminal window with a prompt, much like the infamous C:> in MS-DOS, and a resizable window
(black background by default) where graphics are displayed.

GrADS commands are entered in the terminal window and the response from GrADS is either
graphics in the graphics window or text in the terminal window. The three fundamental GrADS
commands:

e open open or make available to GrADS a data file with either gridded or station data
e d display a GrADS “expression” (e.g., a slice of data)
o set manipulate the “what” “where” and “how” of data display

The GrADS “expression,” or what you want to look at, can be as simple as a variable in the data file
that wasopened, e.g.,d slp’ or an arithmetic or GrADS function operation on the data, €.g.,
slp/100’ or d mag(u,v)’ wheremag is a GrADS intrinsic function.

The “where” of data display is called the “dimension environment” and defines which part, chunk or
“hyperslab” of the 4-D geophysical space (lon,lat,level,time) is displayed. The dimension
environment is manipulated through #s command and is controlled in eittgrid coordinates

(x,y,z,t or indices) oworld coordinates (lon, lat,lev, time).

The “what” and “how” of display is controlled gt commands and includes both graphics methods
(e.g., contours, streamlines) and data (d.tp,a file).

GrADS graphics can be written to a file (ienable print filename angrint) and then converted to
postscript for printing and/or conversion to other image formats.

In addition, GrADS includes graphic primitives (e.g., lines and circles) and basic labelling through
thedraw command.

Theq orquery command is used to get information from GrADS such as which files are opened and
even statistics.

! With the exception of the MS-DOS version which only has one window (the only non-X windows version)

15

3.0 Tutorial

A tutorial and sample datais available from the distribution sites (ftp://grads.iges.org/example.tar and
ftp://sprite.llnl.gov/pub/fiorino/grads/example). Portions of the sample.txt are included below as
another starting point for new GrADS users:

The following sample session will give you afeeling for how to use the basic capabilities of GrADS.
Y ou will need the datafile’model.dat’ on your system. This sample session takes about 30 minutes to
run through.

This datafile is described by the data descriptor file’ model.ctl’. Y ou may want to look at thisfile
before continuing. The data descriptor file describes the actual datafile, which in the case contains 5
days of global gridsthat are 72 x 46 elementsin size.

To start up GrADS, enter:
grads

If gradsis not in your current directory, or if it isnot in your PATH somewhere, you may need to
enter the full pathname, ie:

/usr/homes/smith/grads/grads

GrADS will prompt you with alandscape vs. portrait question; just press enter. At thispoint a
graphics output window should open on your console. Y ou may wish to move or resize this window.
Keep in mind that you will be entering GrADS commands from the window where you first started
GrADS -- thiswindow will need to be made the " active’ window and you will not want to entirely
cover that window with the graphics output window.

In the text window (where you started grads from), you should now see aprompt: ga> You will
enter GrADS commands at this prompt and see the results displayed in the graphics output window.

The first command you will enter is:
open mode .ctl

Y ou may want to see what isin thisfile, so enter:
query file

One of the available variable is called ps, for surface pressure. We can display this variable by
entering:

dps

disshort for display. You will note that by default, GrADS will display an X, Y plot at the first
time and at the lowest level in the data set.

Now you will enter commands to ater the’dimension environment’. The display command (and
implicitly, the access, operation, and output of the data) will do things with respect to the current
dimension environment. Y ou control the dimension environment by entering set commands:

16

clear clear the display

set lon -90 set longitude fixed
set lat 40 set latitude fixed
set lev 500 set level fixed
settl Set time fixed

dz display avariable

In the above sequence of commands, we have set all four GrADS dimensionsto asingle value. When
we set adimension to asingle value, we say that dimension isfixed. Sinceall the dimensions are
fixed, when we display a variable we get asingle value, in this case the value at the location 90W,
40N, 500mb, and the 1st time in the data set.

If we now enter:

set lon -180 0 X isnow avarying dimension
dz

We have set the X dimension, or longitude, to vary. We have done this by entering two values on the
set command. We now have one varying dimension (the other dimensions are still fixed), and when
we display avariable we get aline graph, in this case a graph of 500mb Heights at 40N.

Now enter:

clear
set lat 090
dz

We now have two varying dimensions, so by default we get a contour plot. If we have 3 varying
dimensions:

c
settl5
dz

we get an animation sequence, in this case through time.
Now enter:

clear

set lon -90

set lat -90 90
set lev 1000 100
settl

dt

du

In this case we have set the Y (latitude) and Z (level) dimensionsto vary, so we get avertical cross
section. We have aso displayed two variables, which ssmply overlay each other. You may display as
many items as you desire overlaid before you enter the clear command.

17

Another example, in this case with X and T varying (Hovmoller plot):

c
set lon -1800
set lat 40
set lev 500
settlb

dz

Now that you know how to select the portion of the data set to view, we will move on to the topic of
operations on the data. First, set the dimension environment to an Z, Y varying one:

clear

set lon -180 0
set lat 090
set lev 500
settl

Now lets say that we want to see the temperature in Fahrenheit instead of Kelvin. We can do the
conversion by entering:

display (t-273.16)* 9/5+32

Any expression may be entered that involves the standard operators of +, -, *, and /, and which
involves operands which may be constants, variables, or functions. An example involving functions:

clear
d sgrt(u*u+v*v)

to calculate the magnitude of thewind. A function is provided to do this calculation directly:
d mag(u,v)
Another built in function is the averaging function:

clear
d ave(z,t=1,t=5)

In this case we calculate the 5 day mean. We can also remove the mean from the current field:
d z - ave(zt=1,t=5)
We can also take means over longitude to remove the zonal mean:

clear
d z-ave(z,x=1,x=72)
dz

We can also perform time differencing:

clear
d z(t=2)-z(t=1)

This computes the change between the two fields over 1 day. We could have also done this
calculation using an offset from the current time:

dz(t+l) -z
The complete specification of avariable nameis:

name.file(dim +|-|= value, ...)

18

If we had two files open, perhaps one with model output, the other with analyses, we could take the
difference between the two fields by entering: display z.2 - z.1

Another built in function calculates horizontal relative vorticity viafinite differencing:

clear
d heurl(u,v)

Y et another function takes a mass weighted vertical integral:

clear
d vint(ps,q,275)

Here we have calculated precipitable water in mm.

Now we will move on to the topic of controlling the graphics output. So far, we have allowed
GrADS to chose a default contour interval. We can override this by:

clear
set cint 30
dz

We can also control the contour color by:

clear
set ccolor 3
dz

We can select alternate ways of displaying the data:

clear
set gxout shaded
d heurl(u,v)

Thisis not very smooth; we can apply a cubic smoother by entering:

clear
set csmooth on
d heurl(u,v)

We can overlay different graphics types:

set gxout contour
set ccolor O

set cint 30

dz

and we can annotate;
draw title 500mb Heightsand Vorticity
We can view wind vectors:

clear
set gxout vector
duyv

Here we are displaying two expressions, the first for the U component of the vector; the 2nd the V
component of the vector. We can also colorize the vectors by specifying a 3rd field:

du;v;q

19

or maybe:
d u;v;hcurl(u,v)
Y ou may display pseudo vectors by displaying any field you want:

clear
d mag(u,v) ; g*10000

Here the U component is the wind speed; the V component is moisture.
We can also view streamlines (and colorize them):

clear
set gxout stream
d u;v;hcurl(u,v)

Or we can display actual grid point values:

clear
set gxout grid
du

We may wish to alter the map background:

clear

set lon -110-70

set lat 30 45

set mpdset nam

set digsiz 0.2 Digit size

set dignum 2 # of digits after decimal place
du

To alter the projection:

set lon -140 -40

set lat 1580

set mpvals-120-752565 Map projection constants
set mproj nps North Polar Stereographic
set gxout contour

set cint 30

dz

In this case, we have told grads to access and operate on data from longitude 140W to 40W, and
latitude 15N to 80N. But we have told it to display apolar stereographic plot that contains the region
bounded by 120W to 75W and 25N to 65N. The extra plotting areais clipped by the map projection
routine.

This concludes the sample session. At this point, you may wish to examine the data set further, or
you may want to go through the GrADS documentation and try out the other options described there.

20

4.0 Using GrADS Data Files

GrADS supports two basic data types:

e gridded data dataonagrid
» Station data station or point observations.

The data and meta data (or information about the data) are kept in separate files. The meta datafile
contains a complete description of the data and the name of the file containing it, the datafileis
purely datawith no space or time identifiers. The file which you open in GrADS isthe data
descriptor file (the metadata) or .ctl file. The .ctl is constructed to describe various data types and
structures (e.g., binary and GRIB).

Y ou will need to open at least one data-descriptor file before you can enter other GrADS commands.
open filename

Y ou can open more than one data-descriptor file. Each fileis numbered in the order that you open it
in. Initialy, the "default file" isfile 1, or the first file you open. The importance of the default file
will be discussed later.

Default file extension

".ctl" isthe de facto standard extension for GrADS data descriptor files. Provided you adhere to this
standard there is no need to type the extension ".ctl" when issuing the open command. For example.

typing:
open jandata.1966 hasthe same effect as open jandata.1966.ctl

Introduction to GrADS Data Sets

The raw data are on disk in either binary direct access or sequential unformatted form (IEEE floats
and ints) or GRIB.

The data are described by the data descriptor file, which contains:

« Name of the binary data set.
» Mapping between grid coordinates and world coordinates.
+ Number of variables, abbreviations for variables.

The data-descriptor file is free format, where each field is blank delimited. It can be created easily
with atext editor. The data descriptor file assigns a one to twelve character abbreviation for each
variable in thefile. These abbreviations are used in GrADS expressions.

The use of data descriptor filesis now discussed for gridded and station data. This material uses
simple examples which should be enough to enable users to explore the capabilities of GrADS. More
advanced features of .ctl files are described in Chapter 22 in the Reference Section.

21

Gridded Data Sets

The GrADS gridded may contain any number of variables at specified longitude, latitude, vertical
levels, and time intervals. Latitudes can vary from north to south or from south to north (the
default), and levels can vary from top to bottom or from bottom to top.

GrADS views this data set as a giant “5-D” array—wtilongitude or lon) varying the fastest, then
Y (latitude or lat), the@ (vertical level or lev), then theariable type, thenT (time).

It is easier for us to think of the data set in terms of a sequence of horizontal grids, where longitude
and latitude vary. Each horizontal grid represents a particular variable at a particular height and time.
Each horizontal grid is the same size in any particular GrADS data set (if you have grids of different
sizes, you must create separate data sets).

These grids are written to the data set in the following order: starting with a particular variable, grids
for each vertical level (at a particular time) are written out in ascending order. Then the grids for the
next variable are written out. When all the grids at a particular time have been written, grids for the

next time are written.

The format of this data set is thus exactly the same as the COLA Pressure History format, except:
there are no date/time records and, by default, latitude varies from south to north (not north to south
as in the pressure history data).

Each binary gridded data set is described by a separate data descriptor file, essentially a table of
contents for the binary data set. Following is an example of a simple data descriptor file:

DSET ua.dat

TITLE Upper Air Data

UNDEF -9.99E33

OPTIONSBYTESWAPPED

XDEF 80 LINEAR -140.0 1.0

YDEF 50LINEAR 20.0 1.0

ZDEF 10LEVELS 1000 850 700 500 400 300 250 200 150 100
TDEF 4 LINEAR 0Z10apr1991 12hr

VARS 6

dp 0 O sealeve pressure

z 10 O heights

t 10 O temps

td 6 0 dewpoints

u 10 0 uwinds

v 10 0 vwinds
ENDVARS

The data descriptor file i$reeformat’, ie each entry is blank delimited and may appear in any
column. Comment records start with an asterisk’j in column 1. Comments may not appear in the
list of variable records (between thar s andendvarsrecords). Records may not be more than 255
characters long.

In this example, the binary data set is nam&dat, the undefined, or missing, data value is -
9.99e33, there are80 grid points in the X directiorf0 in the Y direction 10 levels,4 times, and
variables. The variablest, u, andv havelO levels, the variabled has6 levels, and the variabiip
hasone level (see below for a more specific description of each entry).

Think in terms of the X and Y data points at one level for one variable at one time being a horizontal
grid. This grid is exactly in the same storage order as a FORTRAN array, in this case an array

22

DIMENSION A(80,50). Thefirst dimension always varies from west to east, the second from south
to north (by default).

In the above example the horizontal grids would be written in the following order:

Timel, Level ? Variabledp
Time 1, Level 1000, Variable z
Time 1, Level 850, Variable z
then levels 700, 500, 400, 300, 250, 200, then
Time 1, Level 150, Variable z
Time 1, Level 100, Variable z
Time 1, Level 1000, Variablet
Timel, Level 850, Variablet
then levels 700, 500, 400, 300, 250, 200, then
Time 1, Level 150, Variablet
Time 1, Level 100, Variablet
Time 1, Level 1000, Variable td
Timel, Level 850, Variabletd
Time 1, Level 700, Variable td
Timel, Level 500, Variabletd
Time 1, Level 400, Variable td
Timel, Level 300, Variabletd
Time 1, Level 1000, Variableu
Timel, Level 850, Variableu
then levels 700, 500, 400, 300, 250, 200, then
Time 1, Level 150, Variable u
Time 1, Level 100, Variable u
Time 1, Level 1000, Variable v
Time 1, Level 850, Variablev
then levels 700, 500, 400, 300, 250, 200, then
Time 1, Level 150, Variablev
Time 1, Level 100, Variablev
Time2, Level ? Variabledp
Time 2, Level 1000, Variable z
Time 2, Level 850, Variablez
Time 2, Level 700, Variable z
Time 2, Level 500, Variable z
Time 2, Level 400, Variable z

etc
A description of each record in the example GrADS gridded data descriptor file follows:
DSET data-set-name

This entry specifies the name of the binary data set. It may be entered in mixed case.

If the binary data set isin the same directory as the data descriptor file, you may enter the
filename in the data descriptor file without a full path name by prefixing it with a” character. For
example, if the data descriptor fileis:

/data/wx/grads/sa.ctl
and the binary datafileis:

23

/data/wx/grads/sa.dat

you could use the following file name in the data descriptor file:
DSET "sa.dat

instead of:
DSET /data/wx/grads/sa.dat

Aslong as you keep the two files together, you may move them to any directory without changing
the entries in the data descriptor file.

TITLE string

A brief description of the contents of the data set. Thiswill be displayed during a query
command, so it is helpful to put meaningful information here.

UNDEF value

The undefined, or missing, datavalue. GrADS operations and graphics routines will ignore data
with this value from this data set. Thisisa required parameter even if there are no undefined
data.

OPTIONSBYTESWAPPED

Indicates the binary datafileisin reverse byte order from the normal byte order of the machine.
Thiswould happen if you sent afile in binary format from, for example, a Sun to a PC. Putting
this keyword in the descriptor file tells GrADS to swap the byte order as the datais being read.

XDEF number <LINEAR start increment> or <LEVEL Svalue-list>

Defines the mapping between grid values and longitude. Specifically:

number -- the number of grid valuesin the X direction, specified as an integer number. Must be
>=1.
LINEAR or LEVELS - Indicates the grid mapping type.
For LINEAR:
start -- the starting longitude, or the longitude for X=1. Specified as afloating point
value, where negative indicates degrees west.
increment -- the spacing between grid value in the X direction. It is assumed that the X
dimension values go from west to east. Specified as a positive floating value.
For LEVELS:
value-list -- List of "number’ values representing the longitude of each X dimension.
May start and continue on the next record in the descriptor file (records may not be >
255 characters). There must be at least 2 levels (otherwise use L INEAR mapping).

YDEF number mapping start <increment>
<LEVEL Svalue-list>
Defines the mapping between grid values and latitude. Specifically:

number -- the number of grid valuesin the X direction, specified as an integer number.
mapping -- mapping type, specified as a keyword.

Vaid are:
LINEAR -- Linear mapping
GAUSR15 -- Gaussian R15 latitudes

24

GAUSR20 -- Gaussian R20 latitudes

GAUSR30 -- Gaussian R30 latitudes

GAUSR40 -- Gaussian R40 latitudes
Examples of specifying GAUSRxx mapping:
YDEF 20 GAUSR40 15

Indicates that there are 20 Y dimension values which start at Gaussian Latitude 15 (64.10
south) on the Gaussian R40 grid. Thus the 20 values would correspond to Latitudes:

64.10, -62.34, -60.58, -58.83, -57.07, -55.32, -53.56,
51.80, -50.05, -48.29, -46.54, -44.78, -43.02, -41.27,
39.51, -37.76, -36.00, -34.24, -32.49, -30.73

YDEF 102 GAUSR40 1
The entire gaussian grid is present, starting at the southernmost latitude (-88.66).
start -- For LINEAR mapping, the starting latitude, ie the latitudefor Y =1, and is specified

as afloating point value, with negative indicating degrees south. For GAUSRxx mapping, the
start value indicates the first gaussian grid number, where 1 would be the southernmost

gaussian grid latitude.
increment -- the spacing between grid valuesin the Y direction. It isassumed that the Y

dimension values go from south to north. Specified as a positive floating point value. Used

only for LINEAR mapping.

For LEVELS:
value-list -- List of "number’ values representing the latitude of each X dimension. May start

and continue on the next record in the descriptor file (records may not be > 80 characters).
There must be at least 2 levels (otherwise use LINEAR mapping).

ZDEF number mapping <start increment>
<value-list>
Defines the mapping between grid values and pressure level. Specificaly:

number -- the number of grid valuesin the X direction, specified as an integer number.
mapping -- mapping type, specified as a keyword.

Valid are:
LINEAR -- Linear mapping
LEVELS -- Arbitrary pressure levels

start -- when mapping isLINEAR, thisisthe starting value, or the value when Z=1.
increment -- when mapping isLINEAR, the increment in the Z direction, or from lower to

higher. Thismay be a negative value, for example:
ZDEF 10 LINEAR 1000 -100

indicating that the dataiis for levels 1000, 900, 800, 700, etc.
value-list -- when the mapping isLEVELS, the specific levels are simply listed in ascending
order. If thereisonly onelevel, use LINEAR, since LEVEL Simplies at |east two levels.

TDEF number LINEAR start-time increment
Defines the mapping between grid values and time. Specifically:
number -- the number of timesin the data set. Specified as an integer number.

25

start-time -- The starting date/time value, specified in GrADS absolute date/time format. This
isthe value when T=1. The date/timeformat is:
hh:mmzZddmmmyyyy where:

hh = hour (two digit integer)

mm = minutes (two digit integer)

dd = day (one or two digit integer)

mmm = month (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec)

yyyy = year (two or four digit integer. two digitsimplies ayear between 1950 and

2049).
If not specified, hh defaults to 00, mm defaultsto 00, and dd defaultsto 1. The month and
year must be specified. No intervening blanks are allowed in a GrADS absolute date/time.
Examples:

1271JAN1990
14:20Z222JAN1987
JUN1960

increment -- timeincrement. Specified in GrADS time increment format:
vvkk where:

vV = an integer number, 1 or 2 digits
kk = an increment keyword,

mn = minutes

hr = hours

dy =days
mo = months
yr =year

Examples:

20mn -- increment is 20 minutes
1mo --incrementisl1 month
2dy --increment is2 days

Further examples of a TDEF statement:
TDEF 24 LINEAR 00Z01JUN1987 1HR
The data set has 24 times, starting at 00Z on 1 Jun, 1987, with an increment of 1 hour.

TDEF 30 LINEAR 2JUN1988 1DY
The data set has 30 times, starting at 00Z on 2 Jun, 1988, with anincrement of 1 day.]

VARS number
Indicates the start of the records describing the variables in the data set.

number -- the number of variable records

variablerecords (dp ... v)
There are six variable records in this example, each with the following format:

abrev levs unitsdescription

26

abrev --alto 12 character abbreviation for this variable. This abbreviation must start with
an alphabetic character (a-z) and be composed of alphabetic characters and numbers. This
abbreviation will be the "name" the variable is accessed by from within GrADS.

levs -- an integer value specifying the number of levelsthisvariable hasin the data set. It
may not exceed the number of levelsin the ZDEF statement. A levsvalue of O indicates
this variable has one "level" that does not correspond to avertical level. An example would
be a surface variable.

units - Used for GRIB data and specia data format/structures. Put avalue of 99 here.

description - A text description of the variable, max 40 characters.

ENDVARS

After the last variable record comes the ENDVARS statement. This ends the GrADS data
descriptor file. Blank lines after the ENDVARS statement may cause GrADS open to fail!

The options record in the Data Descriptor File

The options record in the data descriptor file allows you to control various aspects of the way
GrADS interprets your raw datafile. It obsoletesthe old "format" record and has the form:

options <keywor ds>

Some keywords are:

options <yrev> <zrev> <sequential> <byteswapped> <template> <big_endian>
<little_endian> <cray_32bit_ieee>

where:

sequential specifies that the file was written in sequential unformatted I/O, where each record is
an X/Y varying grid. Note that if you have only one X and one Y dimension in your file, each
record in the file will be one element long (it may not be a good idea to write the file this way).

yrev specifiesthat the Y, or latitude, dimension has been written in the reverse order from
what GrADS has in the past assumed. An important thing to remember is that GrADS still
presents the view that the data goes from south to north. The Y DEF statement does not
change; it till describes the transformation from a grid space going from south to north. The
reversal of the Y axisis done asthe datais being read from the datafile.

zZrev indicates the data has been written into the file from top to bottom, rather than from
bottom to top as GrADS hasin the past assumed. The same considerations as yrev apply.

template file name templates are in use (see the section on Multiple File Time Seriesin
Chapter 22)

byteswapped byte ordering of datais reversed endian (see the next two options and the
above example .ctl file)

The best way to ensure independence of hardware for gridded data files isto specify the source
platform of the data. This allows the data to worked on both types of hardware without having
to worry about byte ordering. The following two option parameters indicate the actual byte
ordering of the data. If the data are already in the correct order, no conversion is performed.
These options facilitate moving data files and descriptor files between machines.

big endian 32-hit |IEEE floats created on abig_endian platform (e.g., cray, sun, sgi and hp).
little_endian 32-bit IEEE floats created on allittle_endian platform (e.g., iX86, and dec)

27

Station Data Sets

Station data sets are written to a binary file one report at atime. The only ordering required is that
the station reports be grouped within the file into sometime interval. For example, thetimeinterval
for upper air observations might be 12 hours. Please refer to Chapter 16 for more general
information about GrADS facilities for analysing and displaying station data.

Variables within each report are split into two groupings. Each variable is either a surface variable,
thus can be reported at most once per report, or it isalevel dependent variable, thus can be reported
at anumber of different levels within one report.

Byte-ordering control for station datafiles: Y ou may now specify byteswapping (byteswapped,
big_endian, or little_endian) for station datafiles. The stnrmap utility, and GrADs, will perform the
necessary conversion. Station map files must still be created on the machine where they are to be
used.

The format of a station report in the binary station datafileis:

» A header which provides information about the location of the station.
o Surfacevariables, if any
e Level dependent variables, if any

The header is described by the following C language data structure:

struct rpthdr {

char id[8]; /* Character station id */
float Iat; /* Latitude of report */
float Ion; /* Longi tude of report */
float t; /[* Time in relative grid units */
int nlev; /* Nunber of |evels follow ng */
int flag; /* Level independent var set flag */
1
A detailed description of each header entry follows:
id - The station identifier. Thisisalto 7 character identifier that should identify the station

uniquely. It may be assigned arbitrarily; ie. the stations could be numbered in some arbitrary
order.

lat - The'Y dimension location of the station in world coordinates, typically latitude.
lon - The X dimension location of the station in world coordinates, typically longitude.
t - The time of this report, in relative grid units. This refersto the way the stations are grouped

intime. For example, if you are working with surface airways reports, you would probably have a
time grouping interval of one hour. If you wanted to treat the report times of each report as being
exactly on the hour, you would set t to 0.0. If the report was for 12:15pm, and you were writing
the time group for 12pm, you would set t to be 0.25. Thus, t would typically have the range of -
0.5t00.5.

nlev - Number of data groups following the header. Thisisthe count of the one surface group, if
present, plus the number of level dependent groups. |s set to zero to mark the end of atime group
inthefile.

flag - If zero, there are no surface variables following the header. If one, then there are surface
variables following the header.

Following the header, the data for this report iswritten. The first group of data would be all the
surface variables if present. Whether or not the surface variable (if any) are present is determined by
the flag in the header. If present, then all the surface variables must be written—missing variables

28

should have the missing data value provided. Thus, each surface variable group will be the same size
for each report in thefile.

The surface variables are written out as floating point numbers. The ordering of the variables must
be the same in each report, and is the ordering that will be given in the data descriptor file.

Following the surface variable group, any number of level dependent groups may be written. The
number of total data groupsis provided in the header. Each level dependent group must have all
the level dependent variables present, even if they are filled with the missing data value. Thus, each
level dependent group will be the same size for all levels and all reportsin the file.

The level dependent group is written out as follows:

level -- floating point value giving the Z dimension value in world coordinates for this
level.
variables -- Thelevel dependent variablesfor thislevel.

After all the reports for one time grouping have been written, a special header (with no data groups)
iswritten to indicate the end of the time group. The header has an nlev value of zero. The next time
group may then start immediately after. A time group with no reports would still contain the time
group terminator header record (ie, two terminators in arow).

GrADS station data files must be written as UNIX stream data sets without any imbedded record
descriptor information. Thisis easily done from a C program. From a FORTRAN program, it
usually requires a system-dependent option in the OPEN statement. For example, in DEC FORTRAN
one can use the

RECORDTYPE="STREAM’

option to avoid having record descriptor information imbedded in the output file. Examples of C and
FORTRAN programs to create station data sets are provided later in this document. Because there
are no standards for binary 1/0 in 77, it is strongly recommended station data conversion programs
bewrittenin C.

Station Data Descriptor File

The format for the data descriptor file for station datais similar to the format for a gridded data set.
An example of a station data descriptor fileis:

dset Muareps

dtype station

stnmap *ua.map

undef -999.0

title Real Time Upper air obs
tdef 10 linear 12z18jan1992 12hr

vars 12
dp 099 SLP
ts 0 99 Temps
ds 0 99 Dewpoints
us 0 99 U Winds
VS 0 99 V Winds

z 1 99 Heights
t 199 Temps
d 1 99 Dewpoints

29

u 1 99 U Winds
v 199 V Winds
endvars

Note the differences between this descriptor file and a grid descriptor file:

DTY PE record -- specify a data type of: station.

STNMAP record -- givesthe file name of the station mapping file. Thisfileis created by the stnmap
utility, which will be described later.

XDEF, YDEF, ZDEF records -- not specified.

TDEF record -- describes the time grouping interval and the number of time groups in thefile.

VAR records -- surface variables must come first, and are given a zero for the number-of-levels
field. Level dependent variables are listed after the surface variables, and are given aonein the
number-of-levelsfield.

STNMAP Utility

Once the data set has been written, and the descriptor file created, you should then create the station
map file by running the stnmap utility. This utility writes out hash table and/or link list information
that allows GrADS to access the report data more efficiently. The utility will prompt for the name of
the data descriptor file.

If you change the data file—perhaps by appending another time group—you will also have to change
the descriptor file to reflect the changes—the new number of times for example -- and then rerun the
stnmap utility.

Creating Data Files

This section describes how to create the raw data files for gridded and station data, with examples of
appropriate data descriptor files.

Examples of Creating a Gridded Data Set

On a workstation, the binary GrADS data sets need to be created as a 'stream' data set, ie, it should
not have the normal FORTRAN record descriptor words imbedded in it. This can be done from
FORTRAN using direct access I/O:

REAL Z(72, 46, 16)

OPEN (é, FI LE=" grads. dat’ , FORMF" UNFORMATTED' ,
& ACCESS=' DI RECT' , RECL=72* 46)

| REC=1
DO 10 =1, 18
WRI TE (8, REC=I REC) ((Z(J, K, 1),J=1, 72), K=1, 46)
| REC=| REC+1
10 CONTI NUE

This example writes out 16 levels of one variable to a file in direct access format. We are really
writing the data out sequentially, and using direct access to avoid having the record descriptor words
written. There may be options in your compiler to do this more directly, or you may wish to write

the data using a C program.

30

Another simple sample might be:

REAL X(100)
DO 10 |=1, 100
X(1) =l
10 CONTI NUE
OPEN (8, FI LE=" sanp. dat’ , FORME’ UNFORMATTED , ACCESS=" DI RECT’ ,
& RECL=100)
WRI TE (8, REC=1) X
STOP
END

The associated descriptor file:

DSET samp.dat
TITLE Sample Data Set
UNDEF -9.99E33
XDEF 100LINEAR 11
YDEF 1LINEAR 11
ZDEF 1LINEAR11
TDEF 1 LINEAR 1JAN2000 1DY
VARS 1
x 0 99 100 Data Points
ENDVARS

Once created, you can use this data set to experiment with GrADS data functions, such as:

display sin(x/50)

Examples of Creating Station Data Sets
L ets say you have a data set with monthly rainfall:

Year Month Stid Lat Lon Rai nf al |
1980 1 QQ 34.3 -85.5 123.3
1980 1 RRR 44,2 -84.5 87.1
1980 1 SSS 22. 4 -83.5 412.8
1980 1 TTT 33. 4 -82.5 23.3
1980 2 QQ 34.3 -85.5 145. 1
1980 2 RRR 44,2 -84.5 871.4
1980 2 SSS 22. 4 -83.5 223.1
1980 2 TTT 33. 4 -82.5 45.5

A FORTRAN program in DEC FORTRAN to write this data set in GrADS format might be:

CHARACTER*8 STI D
C
OPEN (8, NAME="rai n.ch’)
OPEN (10, NAME='r ai n. dat’ , FORME' UNFORMATTED
& RECORDTYPE=' STREAM)

C
| FLAG = 0
C
C Read and Wite
C
10 READ (8, 9000, END=90) | YEAR, | MONTH, STI D, RLAT, RLON, RVAL
9000 FORMAT (14, 3X,12,2X, A8, 3F8.1)
| F (I FLAG EQ 0) THEN
| FLAG = 1
| YROLD = | YEAR

31

| MNOLD = | MONTH

ENDI F
C
C If newtine group, wite tine group ternnator
C Assuning no enpty tine groups.
C
I F (1 YROLD. NE. | YEAR. OR. | MNOLD. NE. | MONTH) THEN
NLEV = 0
VWRI TE (10) STI D, RLAT, RLON, TI M NLEV, NFLAG
ENDI F
| YROLD = | YEAR
| MNOLD = | MONTH
C
C Wite this report
C
TIM= 0.0
NLEV = 1
NFLAG = 1

WRI TE (10) STI D, RLAT, RLON, TI M NLEV, NFLAG
WRI TE (10) RVAL
GO TO 10
C On end of file wite last tine group term nator

90 CONTI NUE

NLEV = 0O

VWRI TE (10) STI D, RLAT, RLON, TI M NLEV, NFLAG
STOP

END

For a different compiler, you would need the appropriate OPEN statement to write a stream data set,
but this optionsis often times not available. Support for sequential data is under consideration.

An equivalent C program might be:

#i ncl ude <stdio. h>
/* Structure that describes a report header in a stn file */
struct rpthdr {

char id[8]; /* Character station id */
float I|at; /* Latitude of report */
float I|on; /* Longitude of report */
float t; /[* Time in relative grid units */
int nlev; /* Nunber of |evels follow ng */
int flag; /* Level independent var set flag */

} hdr;

main () {

FILE *ifile, *ofile;

char rec[80];

int flag,year, nonth, yrsav, msav,i;
float val;

/* Open files */

ifile = fopen ("rain.ch","r");

ofile = fopen ("rain.dat","wb");

if (ifile==NULL || ofile==NULL) {
printf ("Error opening files\n");
return;

}

/* Read, write |oop */

32

flag = 1;
while (fgets(rec,79,ifile)!=NULL) {
/* Format conversion */
sscanf (rec,"% % ", &ear, &month);
sscanf (rec+20," % % %", &dr. | at, &dr. | on, &val);
for (i=0; i<8; i++) hdr.id[i] = rec[i+11];
/* Time group termnator if needed */
if (flag) {
yrsav = year;
mmsav = nont h;
flag = 0;

if (yrsav!=year || mmsav!=nonth) {
hdr.nlev = 0;
fwite (&hdr, sizeof(struct rpthdr), 1, ofile);

yrsav
msav

= year;

= nont h;

/* Wite this report */

hdr.nlev = 1;

hdr.flag = 1;

hdr.t = 0.0;

fwite (&hdr, sizeof(struct rpthdr), 1, ofile);
fwite (&val, sizeof(float), 1, ofile);

}
hdr.nlev = 0O;
fwite (&hdr, sizeof(struct rpthdr), 1, ofile);

}

Once the binary data file has been written, create the descriptor file. 1t would look something like
this:

dset rain.dat
dtype station
stnmap rain.map
undef -999.0
title Rainfall
tdef 12 linear jan1980 1mo
vars 1
p 0 99 Rainfall
endvars

Then run the stnmap utility to create the station map file. Y ou can then open and display this data
from within GrADS.

33

5.0 Dimension Environment
The data set is always viewed by GrADS as a generalized 4-D (5-D if you include variables) array
located in physical space (lon, lat, lev, time), even if it isin reality a subset of a4-D space.

The current dimension environment describes what part of the data set you want to work with.
Expressions are evaluated with respect to the dimension environment (which allows for simplicity in
the expression syntax), and the final display will be determined by the dimension environment. Thus,
the dimension environment is a GrADS concept that isimportant to understand.

The dimension environment is manipulated by the user by entering one of the following set
commands:

set lat|lon|levitime vall <val2>
This set command sets one dimension of the dimension environment using world coordinates.
Alternatively:

set x|y|z|t vall <val2>

This sets one dimension of the dimension environment using grid coordinates. Y ou may use
whatever coordinates are convenient to you. Issuing "set lon" is equivalent toissuing "set X", both
set the x dimension. The differenceis only the units you wish to enter the command in.

When you enter just one value, that dimension is said to be "fixed". When you enter two values, that
dimension issaid to be "varying". The combination of fixed and varying dimensions defines the
dimension environment.

Examples:
Set lon -180 0 (setslongitude to vary from 180W to 0).
set lat 090 (setslatitude to vary from the equator to 90N)
set lev 500 (sets the level to 500mb - afixed dimension)
settl (sets time to the first time in the data set—using grid coordinates in this case.

Time is now a fixed dimension).
Whenall dimensions are fixed, you are referring ®ragle data point.
Whenone dimension is varying, you are referring t&-® " slice" through the data set.
Whentwo dimensions are varying, you are referring @@ " slice" through the data set.
Whenthr ee dimension vary, GrADS interprets this aseguence of 2-D slices.

An important note. When you enter dimensions in grid coordinates, they are always converted to
world coordinates. This conversion requires some knowledge of what scaling is in use for grid to
world conversions. The scaling that is used in all cases (except one) is the scalirdgi@ithéle

The exception is when you supply a dimension expression within a variable specification, which will
be covered later.

6.0 Variable Names

The complete specification for avariable nameis:
abbrev file#(dimexpr ,dimexpr,...) where:

abbrev isthe abbreviation for the variable as specified in the data descriptor file

filet# isthe file number that contains this variable. The default initially is1. ("set dfile"
changes the default).

dimexpr isadimension expression that locally modifies the current dimension environment.

A dimension expression is used to locally modify the dimension environment for that variable only.
Only fixed dimensions can be thus modified.

An absolute dimension expression is:
X|Y|Z|TILON|LAT|LEV|TIME = value

A relative dimension expression (relative to the current dimension environment):
X|Y|Z|TILON|LATILEV|TIME +/- offset

Examples of variable specifications are:

z.3(lev=500) File 3, absolute dimension expression
tv.1(time-12hr) Relative dimension expression

rh Default file number isused
g.2(t-1,lev=850) Two dimension expressions

Z(t+0) This does have uses....

An important note: When you enter adimension in grid units, GrADS always convertsit to world
coordinates. This conversion isdone using the scaling of the default file. However, when agrid
coordinate (x,y,z,t) is supplied within a dimension expression as part of a variable specification, the
scaling for that file (ie, the file that variable isto be taken from) is used.

GrADS has afew "predefined” variable names. Y ou can think of these as being variables implicitly
contained within any opened gridded file. The variable names are:

lat
lon
lev

When used, they will contain the lat, lon, and lev at the respective grid points, using the scaling of
the appropriate file. You can specify: lat.2 for example, to get latitudes on the grid of the 2™
opened data set.

35

7.0 Expressions

A GrADS expression consists of operators, operands, and parentheses. Parentheses are used the
same as in FORTRAN to control the order of operation.

Operators are:

+ Addition
Subtraction
* Multiplication
/ Division
Operands are:
variable specifications, functions, and constants.

Operations are done on equivalent grid pointsin each grid. Missing data valuesin either grid give a
result of amissing datavalue at that grid point. Dividing by zero gives aresult of amissing data
value at that grid point.

Operations cannot be done between grids that have different scaling in their varying dimensions —
i.e., grids that have different rules for converting the varying dimensions from grid space to world
coordinate space. This can only be encountered when you are attempting operations between grids
from different files that have different scaling rules.

If one grid has more varying dimensions than the other, the grid with fewer varying dimensions is
‘expanded' and the operation is performed.

Some examples of expressions:

z-2z(t-1) (Height change over time)
t(lev=500)-t(lev=850) (Temp change between 500 and 850)
ave(z,t=1,t=5) (Average of z over first 5 times in file)
z - ave(z,lon=0,lon=360,-b) (Remove zonal mean)

tloop(aave(p,x=1,x=72,y=1,y=46)) (Time series of globally averaged precip, on a 72x46 grid)

36

8.0 Defined Variables

Defining new variables

The define command allows you to interactively create a new variable. The syntax is:
define varname = expr

The new variable can then be used in subsequent expressions (it can be used in subsequent define
and/or display commands). The new variableis stored in memory, not on disk, so avoid defining
variables over large dimension ranges.

The variable is defined to cover the dimension ranges in effect at the time the command is issued.
Y ou may define avariable that has from 0 to 4 varying dimensions. The define command is the only
case within GrADS where four varying dimensionsis valid.

When Z and/or T are varying dimensions, the define command eval uates the expression by stepping
through Z and T. In other words, the expression is evaluated within a dimension environment that has
fixed Z and T. Thiswill affect how you compose the expression.

When you use a defined variable, datais taken from the variable in away similar to data taken from a
GrADS datafile. For example, say you define afour dimensional variable:

set lon -180 0
set lat 0 90

set lev 1000 100
sett110
definetemp =rh

After issuing the define command, remember to change the dimension environment so less than 4
dimensions are varying!

setth
set lev 500
dtemp

The display of the defined variable will display a 2-D dlice taken at time 5 and level 500.

If you define a variable that has fixed dimensions, and then later access this variable, the fixed
dimensions are treated as "wild cards’. The best way to show thisiswith an example:

set lon-1800

set lat 0 90

set lev 500

sett 10

define zave = ave(z,t=1,t=30)

The defined variable has two varying dimensions. If we now display this variable (or useit in an
expression), the fixed dimensions of the defined variable, namely Z and T, will match ANY Zand T
dimension setting:

settl
set lev 200
d zave

37

In the above display, the variable zave would be displayed as it was defined, ie you would get atime
average of 500mb heights, even though the level is set to 850.

When the defined variable has varying dimensions, and you have a dimension environment where
that dimension isfixed, the proper dimension will be retrieved from the variable:

set lon -180 0
set lat 0 90

set lev 500
sett 10
definetemp =z
set lat 40
dtemp

In the above example, the defined variable hasavarying Y dimension. We then fix the Y dimension
to be 40N, and display a1-D slice. The datafrom 40N in the defined grid will be accessed. If you
then did:

set lat -40
dtemp

The data from 40S would be accessed from the defined variable. Since thisis beyond the dimensions
originally used when the variable was defined, the data would be set to missing.

Y ou can aso locally override the dimension environment:
d temp(lat=50)

If that dimension is avarying dimension within the defined variable. If the dimension isafixed
dimension for that variable, the local override will be ignored:

d temp(t=15)
In the above command, the defined variable temp has fixed T, so the t=15 would be ignored.
Note: the define command currently supports only grids.

Once you have defined a grid variables, you may tell GrADS that the new variableis climatological,
iethat you wish to treat the time dimension of the new variable in awild card sense.

The command is;

modify varname <seasonal>
<diurnal>

where the var name is the name of the defined grid (the define command must have been previously
used). If the grid is described as seasonal, then it is assumed that the grid contains monthly (or multi-
month) means. Note that daily or multi-day means are not yet supported. If diurnal is specified, itis
assumed the defined variable contains means over some time period less than a day.

After describing the defined variable as climatological, then the date/times are treated appropriately
when data is accessed from the defined variable.

38

An example. The data set contains 10 years of monthly means:

set lon -180 180

set lat -90 90

set lev 500

sett112

define zave = ave(z,t+0,t=120,1yr)

This define will set up avariable called zave which contains 12 times, each time being the 10 year
mean for that month. We are making use here of the fact that the define command loops through a
varying time dimension when evaluating the expression, and within the ave function we are making
use of the variable time offset of t+0, which uses a start time that is whatever time the define
command isusing asit loops.

modify zave seasonal
sett 120
dz-zave

Thefinal display will remove the 10 year monthly mean for December from the last December in the
data set.

Undefining new variables

Each variable defined using the define command reserves some system resources. |f you no longer
need a defined variableit is sensible to free these resources for other use. Thisis accomplished with
the undefine command. For example:

undefine p

would free the resources used by the defined variable p. Of course, the variable p would no longer be
available for GrADS processing.

39

9.0 Displaying Data Plots

Displaying your data
The display command is how you actually display data (output expressions) plots viathe graphics
output window. The command is:
display expression
or
d expression
The simplest expression is avariable abbreviation.
If you display when all dimensions are fixed, you get a single value which is typed out.
If you display when one dimension varies, you get a 1-D line graph by default.
If you display when two dimensions are varying, you get a 2-D contour plot by default.

A variety of plot types are available in addition to the above defaults. Choosing these is the subject
of the next chapter.

Clearing the Display

GrADS will overlay the output from each display command. To clear the display, enter:
clear (or just c)

Issued without parameters, the clear command does pretty heavy duty clearing of many of the
GrADS internal settings. Parameters can be added to limit what is cleared when using more advanced
features, for example:

cevents flushesthe events buffer (e.g., mouse clicks)
cgraphics clearsthe graphics, but not the widgets
¢ hbuff clearsthe display buffer when in double buffer mode

WARNING: If you make any error in the syntax of clear then GrADS does the full clear ...

40

10.0 Graphics Output Types

Before you can display a graph of your data, you will need to set the type of plot you want and,
probably, some other graphics parameters aswell.

By default, when one dimension varies, you get aline graph, and when two dimensions vary, you
get acontour plot. These defaults can be changed by the command:

set gxout graphics_type
some examples of graphics_type are:

contour: Contour plot

shaded: Shaded contour plot

orfill: same as shaded except that each grid box isfilled vice contours
grid: Grid boxes with values

vector: Vector wind arrows

stream: Vector streamlines

bar: Bar chart

line: Line Graph

barb: Wind barbs

fgrid: Shaded grid boxes of specified values using set fgvals
linefill: Color fill between two lines

stat send output to terminal rather than plot

For station data:

value. Station values

barb: Wind barbs

wxsym: Wx symbols

findstn: Find nearest station (see scripting language)
stat send output to terminal rather than plot

There are many options that can be set to control how the graphics_type will be displayed. These
and other graphics_types are covered in detail in Chapter 19 Graphics Options.

For the graphics output types of vector, stream, and barb, the display routines need two result

grids, where the 1% result grid is treated as the U component, and the 2™ result grid is treated as the V
component. To obtain two result grids, you enter two expressions on the display command separated
by a semicolon:

displayu; v
display ave(u,t=1,t=10) ; ave(v,t=1,t=10)

For the types of vector and stream, you can specify a3 grid that will be used to colorize the vectors
or streamlines:

display u;v;hcurl(u,v)
display u;v;mag(u,v)

41

For a gxout of wxsym, each value at a station location is assumed to be awx symbol code number.
Hurricane and tropical storm symbols are included in the symbol set.

draw wxsym symbol x y size <color <thickness>>
Draws the specified wx symbol at the specified location. where:
symbol - isaninteger specifying what symbol to draw

X - X location, in plotter inches

y -y location

Size - size of the symbol (roughly)

color - color of symbol. Use-1 to get standard colors (red for storm, blue for snow,
etc)

thickness - line thickness of the symbol
To see what symbols are available, run grads, then:
run wxsym.gs
Y ou may ook at this script to see how to issue the wxsym command.

42

11.0 Animation

If you display when 3 dimensions vary, you get an animation sequence. Y ou can animate through
any of the three varying dimensions.

By default, the animation dimension istime. Y ou may set which dimension to animate through:
set loopdim x|y|z]t

If you wish to animate when fewer than three dimensions are varying (ie, animate aline graph), you
can control animation by entering:

set looping on|off

Remember to set looping off when you are done animating, or you will get a surprise when you enter
your next expression!

12.0 Page Control

Real and virtual pages
The number and size of plots can be controlled on the "real" page by defining one or more "virtual"
pages. Therelevant command is;

set vpage xmin xmax ymin ymax

This command defines a"virtual page" that fits within the specified limits of the real page. All
graphics output will be drawn into this "virtual page" until another ’set vpage' command is entered.
A clear command clears the physical page (and any virtual pages drawn on it).

When GrADS isfirst started, it prompts for landscape or portrait mode. This defines the size of the
real page (11x8.5 or 8.5x11). The dimensions for the virtual page must fit within the real page.

The'set vpage' command will define virtual page limitsin terms of inches (virtual page inches),
which are the coordinates that will be used in the various commands that require inches to be used.
The new page limits are printed when the ' set vpage' command compl etes.

To return to the default state where the real page equals the virtual page, enter:
set vpage off

Controlling the plot area

To control the areawithin the virtual page that GrADS plots, use:

Set parea xmin xmax ymin ymax
of f

The command specifies the area for plotting contour plots, maps, or line graphs. This area does not
include axis labels, titles, etc., so if you need to see those, provide for an adequate margin.

Theregion is specified in terms of virtual page units. By default, the virtual pageis equal to the real
page, so the units are approximately inches on the real page.

Maps are scaled to fit within the plotting area such that their correct aspect ratio is maintained. Thus,
the map will not fill the entire plotting area except under certain lat/lon ranges. A linegraph or a
contour plot without a map will be scaled to fit entirely within the specified plotting area.

By default, an appropriate plotting area is chosen depending on the type of graphics output. To
return to this default, enter:

set par ea off

It is not appropriate to use this command to put multiple plots on one page. It is better to use the’ set
vpage command.

13.0 Graphics Primitives

Various commands are provided to allow control and display of various graphics primitives. These
enable you to enhance your data plot by adding customised “artwork”. Alternatively, you can use
these commands to create, for example, a map-based diagram with no data plot involved.

Drawing commands

draw map
Draw a map outlined as controlled by current settings and the dimension environment.

draw xlab string
ylab

Writesstring in an appropriate position to labeandy axes.
draw string X y string

Draws the charactetring at thex,y position. x andy are given in inches on the virtual page.
The string is drawn using current string attributes—seedfiestting" and" set strsiz"
commands.

draw linex1yl x2y2

Draws a line fronmx1, y1 to X2, y2 using current line drawing attributes. See et line"
command.

draw rec xlo ylo xhi yhi

Draws an unfilled rectangle frorio, ylo to xhi, ylo to xhi, yhi toxlo, yhi toxlo, ylo. The
rectangle is drawn using current line drawing attributes.

draw recf xlo ylo xhi yhi

Draws a filled rectangle in the area describedlbyylo, xhi, yhi. The fill color is the current
line drawing attributeolor.

draw mark marktypexy size
Draws a marker of typenarktype at positiorx, y at the requestedize. Marker types are:

1 - crosshair

2 - open circle

3 - closed circle
4 - open square
5 - closed square

draw polyf x1ylx2y2x3y3...xnyn

Draw a filled polygon between a seriesxgf points. The polygon is closed by havimg= x1
andyn =yl. Set line controls the fill color.

45

Controlling drawing commands

The following commands specify various aspects of the way draw commands work.
set font number where: number =0...5
Selects the font for subsequent text operations.
set line color <style> <thickness>
Sets current line attributes.
colorsare:

0 - black 5-cyan
1 - white 6 - magenta

2-red 7 - yellow
3 - green 8 - orange
4 - blue 15- grey
styles are:
1- solid 5 - dotted
2 - long dash 6 - dot dash
3 - short dash 7 - dot dot dash

4 - long, short dashed

Thickness values range from 1 to 6, and provide various line thicknesses on laser printed
output.

set string color <justification <thickness <rotation>>>

Sets string drawing attributes. Color is as described above. Justification isthe string
justification, or how the string is plotted with respect to the X, y position given in the "draw
string" command. Refer to the following picture for the appropriate codes:

tr tc tr tl - top left
o LR + tc - center top
| | tr - right top

I+ +cC +r etc.

I I
T o e o +
bl bc br

The rotation option specifies the desired string rotation in degrees. When rotated, the center
of rotation isthe justification point. Rotation is counter-clockwise.

set strsiz hsiz <vsiz>

This command sets the string character size, where hsiz isthe width of the characters, vsizis
the height of the characters, in virtual page inches. If vsizisnot specified, it will be set the
same value as hsiz.

46

set rgb color-number red green blue

Defines new colors within GrADS, and assigns them to a new color number. Thisnew color
number may then be used within any GrADS command that needs a color number, such as
"set ccols'.

The color-number must be a value between 16 and 99 (0 to 15 are predefined). Thered,
green, and blue values must be between 0 and 255. For example:

set rgb 50 255 255 255

Would define anew color number, 50, and assign acolor toit. In this case, the color would be
white.

The translator gxps will make use of the new color settings although the output colors will

have to be checked for the desired rendering. gxpswill not directly transate new colors into
greyscales—instead, it will translate treeen intensity only into a new greyscale value. Note
thatgxps has a predefined mapping between color values from 0 to 15 such that the predefined
"rainbow" color effect is rendered as a fairly pleasing greyscale gradation, which cannot be
done for newly defined colors.

Plot clipping

You may specify a clipping area for drawing graphics primitives such as lines and strings. When you
do adisplay command, GrADS sets the clipping region topheea, draws the graphic, then sets the
clipping region to the entire page. Even if you have set the clipping region, a display command will
reset it to the entire page. To clip the display of the various draw commands:

set clip xlo xhi ylo yhi
wherexlo,xhi,ylo,yhi are the clipping coordinates in real page inches.

47

14.0 Hardcopy Output

Producing a GrADS print file

If you plan to do hardcopy output first enter the command:
enable print file-name

This enables the print command, and directs print command output to the file given. Any existing
contents of thisfile will be lost.

When you have a graphic displayed that you want to print, enter the command:
print

Thiswill copy the vector instructions used to create the current display into the output filein a
GrADS metacode format.

Y ou can close the output file either by quitting GrADS (quit command) or the r einit command, or by
entering:

disable print

Printing a GrADS print file

Once the output file has been closed, the metacode commands within it must be translated to the
desired format. The gxps utility has been provided to do this. This utility does not run from within
the GrADS command environment, you must execute them from the UNIX command line:

gxps - Trandate to monochrome postscript (white background). The default GrADS rainbow
colors (color numbers 2 to 14) are translated into pleasing greyscale values. User defined
colors (numbers above 15) are trandated to greyscal e intensity based on their green content
only.

The gxps utility converts GrADS graphics metafiles (when "printing” in GrADS) to
postscript. It solvesall conversions problems in one utility using command line options:

-C color on awhite background (= old gxpscw)

-r color on ablack background (= old gxpsc)

-i fname where fname is the name of the input GrADS metafile

-0 fnamewhere fname is the name of the output psfile

-d add a ctrl-d to the end of thefile, useful if printing on a HP1200C/PS color printer

The gxps utility will prompt for both an input filename and an output filename. The input filename
will be the file created by the enable print command. The output filename will be a name of your
choice. Any existing file with this name will be deleted. Once the output file is created, you may
print it using UNIX print commands. The default is ab/w plot.

15.0 EXEC Command

The exec command is used to execute a sequence of GrADS commands from afile. If aclear
command is encountered, GrADS waits until enter is pressed before clearing and continuing with
command processing.

The command is:
exec fileename<argOargl ... arg9>
where: file-nameisthe name of afile containing GrADS commands.

The variables & 0 to & 9 may be used within the exec file to be replaced by blank delimited arguments
to the exec.

49

16.0 Using Station Data

Station Datais also supported within GrADS to alimited extent. Station data consists of data points
distributed essentially randomly within the four dimensions.

Operating on station data
Currently, station data operations and display are supported for three distinct dimension
environments:

* X, Y varying (horizontal X, Y plot)
e Zvarying (vertical profile)
* Tvarying (time series)

Operations may be done on station data as with gridded data. Operations between grids and station
data are not supported.

Operations between station data are defined as being the operation performed on data points that have
exactly the same varying dimension values.

For example, if T isthe only varying dimension, the expression:
display ts-ds

would result in atime series of station data reports being retrieved for two separate variables. Then,
for station reports having exactly the same time, the operation is performed. Note that duplicates are
ignored, with the operation being performed between the first occurrences encountered.

When both X and Y are both fixed dimensions, the variable specification may include a station
identifier, which specifies alocal override for both lat and lon.

The syntax for this would be:
var name(stid=ident)

The station identifiers are case insensitive.

Some functions do not support station data types. These are:
hdivg hcurl vint maskout ave aave tloop

When X and Y are varying, station data values are displayed as numbers centred at their locations. |If
two expressions are supplied on the display command (ie, display ts;ds) then two values are
displayed, above and below the station location. The display is controlled by the following set
commands:

set ccolor color
set dignum digits
set digsizsize
set stid on|off
The’set stid’” command controls whether the station identifier is displayed with each value.

50

Station Models

GrADswill plot station models from station data. Thisis enabled by:
set gxout model

The appropriate display command is:
display u;v;t;d;dp;delta;cld;wx;vis
where;

u and v are the wind components. A wind barb will be drawn using these values. If either is
missing, the station model will not be plotted at all.
t, d, dp, and delta are plotted numerically around the station model:

t dp
viswx O delta
d

cld isthe value of the symbol desired at the center of the station model. Vaues1to 9 are
assumed to be the marker types (ig, circle, square, crosshair, etc). Values 20 to 25 are
assumed to be cloudiness values:
20 -clear
21 -scattered
22 -broken
23 -overcast
24 -obscured
25 -missing (M plotted)
wx isthe value of the wx symbol (see’plot wxsym’) to be plotted in the wx location.
visisthe visibility asarea number. It will be plotted as a whole number and a fraction.

When any of these items are missing (other than u and v), the model is plotted without that element.
To represent aglobally missing value, enter a constant in the display command. For example, if the
delta were aways missing, use:

display u;v;t;d;dp;0.0;cld

The station models respond to the usual set commands such as ’set digsiz', "set dignum’, ’ set
cthick’, "set ccolor’.

In addition, thereis:
set stnopts <dig3> <nodig3>

which will cause the model to plot the number in the slp location as a three digit number, with only
the last three digits of the whole number plotted. Thisallowsthe standard 3 digit sealevel pressure
to be plotted by enabling 'dig3’ and plotting dp* 10.

51

17.0 Introduction to GrADS Scripts

Scripts offer users the facility to program GrADS operations. Although it is relatively easy for users
to produce sophisticated GrADS graphics without ever writing a script, there are occasions where the
programming capability makes things even easier. This chapter explains the general capabilities of
scripts, how to run them, and suggests a strategy for users who may wish to write their own.

What scripts can do

The GrADS scripting language, used viathe GrADS run command, provides asimilar capability to
the exec command, except that a script may have variables, flow control, and access GrADS
command output. Scripts may be written to perform avariety of functions, such as allowing a user to
point and click on the screen to select something, to animate any desired quantities, to annotate plots
with information obtained from GrADS query commands.

The full documentation of the GrADS scripting language isin Chapter 23 Programming GrADS:
Using the Scripting Language. Before attempting to write your own scriptsit is recommended that
you read the rest of this chapter and then run some of the supplied scripts (as listed in Appendix A).
Study the example scripts, referring to Chapter 23 for information on syntax etc., and you will soon
be equipped to write scripts of your own.

Running scripts

The command to execute a script isthe run command:
run file-name options where: file-name = *.gs

This command runs the script contained in the named file.

Automatic script execution

Y ou may have asimple script automatically executed before every display command:
set imprun script-name

This script would typically be used to set an option that by default gets reset after each display
command, for example:

"set grads off’

Y ou can issue any GrADS command from this script, but the interactions are not aways clear. For
example, if you issued adisplay command from this script, you could easily enter an infinite
recursion loop.

The argument to the script is the expression from the display command.

52

Storing GrADS scripts
It is convenient to put all your GrADS "utility" scripts, such as cbarn.gs or font.gs, in one directory
(e.q., /usr/local/grads/lib/scripts).

To simplify running these scripts, GrADS first looks in the current directory for the script and then, if
it can’t find it, appendsthe ".gs' extension and tries again. For example, suppose you are working on
atest script called t.gs. Youwould runit in GrADS by,

runt

If after the first two tries, the script still can’t be located, then GrADS looks in the directory defined
by the environment variable GASCRP. Inthet(csh), for example,

setenv GASCRP /homel/gradd/lib
orinksh,
export GASCRP=/homel/grads/lib

Note theif the/ is not added to the end of the directory name, it is automatically added by UNIX.
However, it'll ill work if you type

setenv GASCRP /homel/gradg/lib/
If the script cannot be found, then .gsis appended and GrADS tries yet again. Thus,

ddp
run /homel/grads/lib/cbarn.gs

simplifiesto,

ddp
run charn

53

18.0 Additional Facilities

Shell commands
Shell commands can be entered at the GrADS command line, by preceding them with an exclamation
point:

ga> !ls-l /data/wx/grads

The output of the command, unless redirected, will appear on your console. Shell commands may be
executed via a script or exec; but the output of the command will not be returned to the script viathe
result variable.

Command line options on GrADS utilities

Y ou may specify the file names on the command line of GrADS utilities:
stnmap -i descriptor-name
oxps -i meta-file-name -o ps-file-name

Reinitialisation of GrADS

Two commands have been added to support resetting or reinitializing the state of GrADS:
reset : This command initializes GrADS to itsinitial state with the following exceptions:

1) Nofilesare closed
2) No defined objects are released
3) The'set display’ settings are not modified

If files are open, the default file is set to 1, and the dimension environment is set to X,Y
varying and Z and T set to 1 (as though file 1 were just opened).

reset can reset only certain parts of GrADS to their initial state by using the following

parameters:

reset events resets the events buffer (e.g., mouse clicks)

reset graphics resets the graphics, but not the widgets

reset hbuff resets the display buffer when in double buffer mode

reset nor set reset the X events only

reinit; This command does the same asreset, and in addition closes all open files and

releases all defined objects. It essentially returns GrADSto itsinitial state just after itis
started.

Displaying GrADS Metafiles

A GrADS metafile is the file created with the print command which contains instructions for
recreating the plot on an output device, such as screen or printer.

gxtran.exeis used to display GrADS metafiles. Severa command line options are available:

-ifname fnameisthe name of the metafile

-r reverse black and white so you get your plot on white(black) background.

- WWWWxHHHH+X+Y
Thisisthe same as the command line option in GrADS and allows you to set the geometry of
the x window as you would in any other X app. The only difference is the space between -g
and WWWW. The display window will be WWWW pixelswide HHHH pixelstall starting
at X and Y on the screen.

-a animate the frames, i.e., do not pause between frames until the user hitsareturn in the
command window.

For example,
gxtran -r -a -g 800x600+0 -i test.gm

would open awindow 800x600 starting at the upper left corner of the screen and animate all frames
(plots) in the file test.gm using areverse background.

55

Reference Section

56

19.0 Graphics Options

Graphics options control the way graphics output looks. Some options are valid for most graphics
output types, some valid for only one.

Some of the options "stick” until changed. Others stay the same until aclear command isissued, and
yet others are reset to their defaults by either aclear command or adisplay command.

1-D Graphics

Line Graphs (gxout = line):

set ccolor color - Setsline color. Reset by clear or display, where:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11- med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9 - purple 14 - dark purple

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set cstyle style - Setslinestyle Reset by clear or display
set cmark marker - Setsline marker:

0 - none

1-cross

2 - open circle

3-closed circle

4 - open square

5 - closed square

6-X

7 - diamond

8 - triangle

9 - none

10 - open circle with vertical line

11 - open oval

Reset by clear or display
set missconn on - By default, when GrADS plots aline graph, missing dataisindicated by a

"break’ in the line. set missconn on connects the lines across missing data.
set missconn off - resets the default behavior

Bar Graphs (gxout = bar)

set bargap val - Sets the gap between barsin percent. val should range from 0 to 100. The
default is 0, or no gap. A value of 100 gives asingle vertical line for each bar.

set barbase val|bottom|top - If val isgiven, each bar rises or falls from that value, assuming the
value is within the plotting range. If bottom is specified, each bar rises from the bottom of the
plot. If top is specified, each bar falls from the top of the plot.

set baropts opts

57

where: opts= outline do not fill in the bar

filled fill the bar
set ccolor color - Setsline color. Reset by clear or display, where:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

Error Bars(gxout = errbar)

Set ccolor color - Setsline color. Reset by clear or display, where:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set bargap val - Sets the gap between barsin percent. val should range from 0 to 100. The
default is 0, or no gap. A value of 100 givesasingle vertical linefor each bar.

set barbase val|bottom|top - If val isgiven, each bar rises or falls from that value, assuming the
value iswithin the plotting range. If bottom is specified, each bar rises from the bottom of the
plot. If top is specified, each bar falls from the top of the plot.

Line Graph Shading (gxout = linefill)

Set Ifcols12
dab
Color wherea < b inwhite (1) and b > ainred (2)

2-D Gridded Graphics

Line Contour Plots (gxout = contour)

set ccolor color - setsthe contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15 - grey
1 - white 6-magenta 11- med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- aqua
4 - blue 9 - purple 14 - dark purple

Reset by clear or display

Y ou can also issue:

58

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.
set cstyle style - setsthe contour linestyle.
Style numbers are:
1-solid
2 - long dash
3 - short dash
5 - dots
Reset by clear or display
set cterp on|off - Turns spline smoothing on or off. "Sticks" until reset. Shaded contours are
drawn without spline fitting, so to insure an exact match when overlaying contour lines and
shaded contours of the same field, specify cterp as off. You can still use the’csmooth’ option,
which affects both contour lines and shaded contours.
set cint value - sets the contour interval to the specified value. Reset by aclear or display

set cmin value - Contours not drawn below thisvalue. Reset by clear or display.
set cmax value - Contours not drawn above thisvalue. Reset by clear or display.
set black off/vall val2 - Contours not drawn within thisinterval. Reset by clear or display.

set clevslevllev2 - Sets specified contour levels. Reset by clear or display
set ccolscoll col2 - Sets specified color for clev levels. Reset by clear or display
(Note: Rainbow sequenceis. 9, 14, 4,11, 5, 13, 3,10, 7,12, 8, 2, 6)
set rbrange low high - sets the range of values used to determine which values acquire
which rainbow color. By default, thelow and high are set to the min and max of the result
grid. Thisisreset by a clear command.
set rbeols color1 color2 <color3> ...
<auto>
Specifiesanew 'rainbow’ color sequence. The color numbers may be new colors defined via
the’set rgb’ command. These colors replace the default rainbow color sequence whenever
the rainbow color sequenceisused. If you 'set rbcolsauto’ the built in rainbow sequenceis
used. This’sticks' until reset.
set clopts color <thickness <size>>> where:
color -isthelabel color. -1 isthe default, and indicates to use the contour line color as the
label color
thickness - isthe label thickness. -1 isthe default.
size - isthelabel size. 0.09 isthe default.
This setting stays set until changed by issuing another ' set clopts command.

set csmooth on|off |linear - If on, the grid isinterpolated to afiner grid using cubic
interpolation before contouring. " Sticks".

Note: thisoption will result in contour values below and above the min and max of the un-
interpolated grid. This may result in physically invalid values such asin the case of negative
rainfall. The problem can be avoided by set csmooth linear, which useslinear interpolation
to create the finer grid.

59

set clab on | off | forced | string | auto - Controls contour labelling. "Sticks' until reset.

on - indicates 'fast’ contour labels. Labels are plotted where the contour lineis
horizontal.
off - no contour labels

forced - anattempt ismadeto label all contour lines
string - specifiesa’substitution’” template for conversion of the contour value to character.

This conversion is done by acall to the C system library routine’sprintf’. Do aman on
printf (on the DECstations, do 'man 3s printf’) to get information on how this substitution
works.

Note that a single floating point number is being passed to the sprintf routine for each use
of the substitution string.

The result of this substitution is then passed to the GrADS character plotting system. Font
controls are also passed, so you may include GrADS font control commands in your
substitution string.

Default: set clab auto Uses a substitution string of %g

Example:
set clab % gK Putsa K on the end of each |abel
set clab % g% % Puts a percent on the end
set clab % .2f Puts two digits after the decimal point on each label

set clab %03.0f Plots each contour value as a 3 digit integer with leading
zeros
set clab Foo L abels each contour with Foo

Warning!!!! No error checking is done on this string! If you specify a multiple substitution
(ie, %9%i), the sprintf routine will look for non-existent arguments and the result will
probably be a core dump. Y ou should not use substitutions for types other that float (ie, %i
or % s should not be used).

This option getsreset to *auto’ when aclear isissued.

auto - specifies that you do not want a previously specified string to be used, but instead
wish to use the default substitution.
set clskip number - where number isthe number of contour linesto skip when labelling. For
example, set clskip 2 would label every other contour.

Shaded or Grid Fill Contour Plots (gxout = shaded or grfill)
set cint value - sets the contour interval to the specified value. Reset by aclear or display

set cmin value - Contours not drawn below thisvalue. Reset by clear or display.
set cmax value - Contours not drawn above thisvalue. Reset by clear or display.
set black off/vall val2 - Contours not drawn within thisinterval. Reset by clear or display.

set clevslevllev2 - Sets specified contour levels. Reset by clear or display

set ccolscoll col2 - Sets specified color for clev levels. Reset by clear or display
(Note: Rainbow sequenceis. 9, 14, 4,11, 5,13, 3,10,7,12, 8, 2, 6)

set rbrange low high - sets the range of values used to determine which values acquire
which rainbow color. By default, thelow and high are set to the min and max of the result
grid. Thisisreset by a clear command.

60

set rbeols color1 color 2 <color 3> ...
<auto>

Specifiesanew 'rainbow’ color sequence. The color numbers may be new colors defined via
the 'set rgh’ command. These colors replace the default rainbow color sequence whenever
the rainbow color sequenceisused. If you 'set rbcolsauto’ the built in rainbow sequenceis
used. This’gticks' until reset.

set csmooth on|off |linear - If on, the grid isinterpolated to afiner grid using cubic
interpolation before contouring. " Sticks".

Note: thisoption will result in contour values below and above the min and max of the un-
interpolated grid. This may result in physically invalid values such asin the case of negative
rainfall. The problem can be avoided by set csmooth linear, which useslinear interpolation
to create the finer grid.

Grid ValuePlot (gxout = grid)

set dignum number - Number of digits after the decimal place
set digsize size - Size (ininches, or plotter units) of the numbers. 0.1t0 0.15isusualy a
good range to use. Both of these options stay the same until changed.

Vector Plot (gxout = vector)

Set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

Reset by clear or display
Y ou can also issue:

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

Set arrscl size <magnitude> - Specifies arrow length scaling. Sizeisthe length of the
arrow in plotting units (inches on the virtual page). A typical value would be 0.5to 1.0.
Magnitude is the vector magnitude that will produce an arrow of the specified size. Other
arrow lengths will be scaled appropriately. If magnitudeis not given, al the arrows will be
the samelength. Reset by clear or display.

set arrowhead size - where sizeisthe size of the arrowhead. The default is 0.05. If set to 0, no
arrowhead is plotted. If set to a negative value, the size of the arrowhead will be scaled to the
sizeof thearrow. The value specified will be the size when the arrow is oneinch in length.

set cint value - sets the contour interval to the specified value. Reset by aclear or display

set cmin value - Contours not drawn below thisvalue. Reset by clear or display.
set cmax value - Contours not drawn above thisvalue. Reset by clear or display.
set black off/vall val2 - Contours not drawn within thisinterval. Reset by clear or display.

61

set clevslevllev2 - Sets specified contour levels. Reset by clear or display

set ccolscoll col2 - Sets specified color for clev levels. Reset by clear or display
(Note: Rainbow sequenceis. 9, 14, 4,11, 5,13, 3,10,7,12, 8, 2, 6)

set rbrange low high - sets the range of values used to determine which values acquire
which rainbow color. By default, thelow and high are set to the min and max of the result
grid. Thisisreset by a clear command.

set rbeols color 1 color 2 <color 3> ...

<auto>

Specifiesanew 'rainbow’ color sequence. The color numbers may be new colors defined via
the'set rgh’ command. These colors replace the default rainbow color sequence whenever
the rainbow color sequenceisused. If you 'set rbcolsauto’ the built in rainbow sequenceis
used. This’gticks' until reset.

set arrlab onjoff - Toggles drawing the vector label for gxout vector: Defaultsto on and
"sticks' (clear doesn’t changeit’s state).

Wind Barb Plot (gxout = barb)
Asfor gxout = vector.

Scatter Plot (gxout = scatter)

set cmark marker - Setsline marker:
0 - none
1-cross
2 - open circle
3-closed circle
4 - open sguare

5 - closed square
6-X
7 - diamond
8 - triangle
9 - none
10 - open circle with vertical line
11 - open oval
Reset by clear or display
set digsize size - Size (ininches, or plotter units) of the numbers. 0.1t0 0.15isusualy a
good range to use. Both of these options stay the same until changed.
set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

Reset by clear or display
Y ou can also issue:

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

62

Specific Value Grid Fill Plot (gxout = fgrid)

set fgvals value color <value color> <value color> ... - The fgrid output type treats the
grid values as rounded integers, and will shade a specified integer valued grid with the
specified color. Unspecified values are not shaded. "Sticks'.

Streamline Plot (gxout = stream)

Set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

Reset by clear or display
Y ou can also issue:

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cint value - setsthe contour interval to the specified value. Reset by aclear or display

set cmin value - Contours not drawn below thisvalue. Reset by clear or display.

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set cmax value - Contours not drawn above thisvalue. Reset by clear or display.

set black off/vall val2 - Contours not drawn within thisinterval. Reset by clear or display.

set clevslevllev2 - Sets specified contour levels. Reset by clear or display

set ccolscoll col2 - Sets specified color for clev levels. Reset by clear or display
(Note: Rainbow sequenceis. 9, 14, 4,11, 5,13, 3,10,7,12, 8, 2, 6)

set rbrange low high - sets the range of values used to determine which values acquire
which rainbow color. By default, thelow and high are set to the min and max of the result
grid. Thisisreset by a clear command.

set rbeols color 1 color2 <color3> ...

<auto>

Specifiesanew 'rainbow’ color sequence. The color numbers may be new colors defined via
the 'set rgh’ command. These colors replace the default rainbow color sequence whenever
the rainbow color sequenceisused. If you 'set rbcolsauto’ the built in rainbow sequenceis
used. This’gticks' until reset.

set strmden value - specifies the streamline density, where the valueisfrom 1to 10. 5is
default.

63

1-D Station Graphics

Plot time series of wind barbs at a point (gxout = tserbarb)
For example:
set gxout tserbarb
d us(stid=79001; vs(stid=79001)
Plot time seriesof weather symbols at a point (gxout = tserwx)
For example:

set parea 0.75 10.5 3.875 4.25
set grads off

set gxout tserwx

set digsiz0.11

d wx(stid=79001)

where the grid wx contains codes for weather symbols

2-D Station Graphics

Plot station values (gxout = value)

Set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

Reset by clear or display
Y ou can also issue:

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set digsize size - Size (ininches, or plotter units) of the numbers. 0.1t0 0.15isusualy a
good range to use. Both of these options stay the same until changed.
set stid on/off - Controls whether the station id is displayed next to the values or not.

Plot wind barb at station (gxout = barb)

Set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue

2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua

4 - blue 9 - purple 14 - dark purple
Reset by clear or display

Y ou can also issue:

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set digsize size - Size (ininches, or plotter units) of the numbers. 0.1t0 0.15isusualy a
good range to use. Both of these options stay the same until changed.

Plot weather symbol at station (gxout = wxsym)

Set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3 - green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

Reset by clear or display
Y ou can also issue:

set ccolor rainbow - to obtain the rainbow color sequence.
set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set digsize size - Size (ininches, or plotter units) of the numbers. 0.1t0 0.15isusualy a
good range to use. Both of these options stay the same until changed.

set wxcolscl c2 c3 ¢4 ¢5 c6 - where: cl ... ¢6 are the symbol colors

Plot station model (gxout = model)

Set ccolor color - sets the contour color, where: color is specified as a color number:
0 - black 5-cyan 10 - yellow/green 15- grey
1 - white 6-magenta 11 - med. blue
2-red 7 - yellow 12 - dark yellow
3-green 8 - orange 13- agua
4 - blue 9- purple 14 - dark purple

Reset by clear or display
Y ou can also issue:
set ccolor rainbow - to obtain the rainbow color sequence.

65

set ccolor revrain - use the reversed rainbow sequence, complements set ccolor
rainbow

set cthick thckns - Setsthe line thickness for the contours given an integer in the range of 1 to
10 representing relative line thicknesses. Thickness of 6 or more will be thicker on the screen.
Primarily used for controlling hardcopy output.

set digsize size - Size (ininches, or plotter units) of the numbers. 0.1t0 0.15isusualy a
good range to use. Both of these options stay the same until changed.
set mdlopts opt - where: opt = noblank, blank, dig3, or nodig3

set wxcolscl c2 c3 ¢4 ¢5 c6 - where: ¢l ... ¢6 are the symbol colors

Other Display Options

Find closest station to x,y point (gxout = findstn)
See Chapter 23 Programming GrADS.

Write datato file (gxout = fwrite)

set fwrite out.dat
set gxout fwrite

Output the grid to the file out.dat (goesto grads.fwrite by default). The data consist of local
floats (e.g. 32-bit IEEE big endian floats on a sun/sgi/hp workstation)

Display information about data (gxout = stat)

set gxout stat

d
sends output to the terminal as opposed to a plot or data output (e.g., set fwrite out.dat ; set
gxout fwrite; d rh). Or the output goes to the script variable "result” which can be parsed
inside a script (see the corr.gs GrADS script)

The output allows many statistical calculations to be made. Here's an example of opening up a
global model file and looking at the 1000 mb relative humidity, statistically,

ga-> set gxout stat

ga->drh

Data Type=grid

Dimensions=01

| Dimension = 1to 145

J Dimension =1t0 73

Sizes = 145 73 10585

Undef value = 1e+20

Undef count =0 Valid count = 10585
Min, Max = 0.0610352 100.061
Stats(sum,sumsgr,n): 787381 6.35439e+07 10585
Stats(sum,sumsgr)/n; 74.3865 6003.2
Stats(sum,sumsgr)/(n-1): 74.3935 6003.77
Stats(sigma,var)(n): 21.6761 469.854
Stats(sigma,var)(n-1): 21.6771 469.898

66

Cmin, cmax, cint = 10 100 10
Let'sbreak it down:

Data Type=grid ----- you have agrid

Dimensions=01 ----- the dimension type for the variable
0 -lon
1 -lat
2 -lev
3 -time

1 - not varying

| Dimension =1t0 145 ------ obvious

J Dimension =1to 73

Sizes= 14573 10585 ------- 10585 is 145* 73 or total number of points

Undef value = 1e+20 ------- undefined value

Undef count = 0 Valid count = 10585 ----- # of defined and undefined pointsin the grid.
Remember that if GrADS can't find any datait returns undefs. Thisis useful for
checking if you have any data, Valid count = 0 means no...

Min, Max = 0.0610352 100.061 ---- UHHH OHHHH! we have dlight supersaturation..

Stats(sum,sumsgr,n): 787381 6.35439e+07 10585 - This should be fairly obvious, sum
= the ssimple sum of al defined points. sumsgr = sum of, in this case, rh*rh and 10585
isn.

Stats(sum,sumsgr)/n: 74.3865 6003.2 - Divide by n for convenience, the first
number isthe "biased" mean...

Stats(sum,sumsgr)/(n-1): 74.3935 6003.77 - the so called "unbiased" mean (remove 1
degree of freedom), etc.

Stats(sigma,var)(n): 21.6761 469.854 - the standard deviation and variance
"biased" (n)

Stats(sigma,var)(n-1): 21.6771 469.898 - the standard deviation and variance
"unbiased" (n-1)

Cmin, cmax, cint = 10 100 10- What GrADS will use when contouring.
NOTE: Thisworksfor both gridded and station data

Set Commands to Control Graphics Display

Set rangefor plotting 1-D or scatter plots

set vrange yly2 - Specifiesthe range of the variable values for y-axis scaling (from y1 - y2).
Reset by clear only.
set vrange2 x1x2 - Specifiesthe range of the variable values for x-axis scaling (from x1 - x2).
Reset by clear only.
To control log scaling when the Z dimension is plotted on any plot:

set zlog on|off - Setslog scaling of the Z dimension on or off. Sticks until reset.

67

To control axis orientation:
set xyrevon off - Reversesthe axeson aplot.
Example:

By default for aZ, T plot, the time dimension is plotted horizontally, and the Z dimension is
plotted vertically. By setting xyrev, the time dimension would be plotted vertically and the Z
dimension would be plotted horizontally.

set xflip on off - flips the order of the horizontal axis (whatever axisis horizontal after xyrev
isapplied).
set yflip on off - flips the order of the vertical axis.

All the above axis orientation commands are reset by a’clear’ or’set vpage' command.

To control axislabelling

set xaxislyaxis start end <incr> - Specifiesthe axisis to be labelled from the specified start
value to the specified end value with the specified increment. Labels may have no relation to
data or dimensions.

set xlint interval
ylint

Specifiesthe label interval. Overridden by ’set xlevslylevs . Reset by aclear command.

Note that labels are always ' started’ at 0. ie, if you set the interval to 3, the labels will be 0, 3,
6,9..

If you set the interval to anegative value, thisindicates to start the labelling at the axis start
value. If thiswere 1 (with and interval of 3), then the labelswould be 1, 4, 7...

This setting will override alabelling interval specified on the xaxis or yaxis commands.
This command does not apply to a date/time axis.

set xlab on | off | auto | string
ylab

Thisworks the same way as the’set clab’ command. An example:
set ylab % .2f

would plot al the Y axislabels with 2 digits after the decimal point. Thisisreset by a clear
command.

set xlevs labllab?2 ...
ylevs

Specifiesthe label levelsto plot for the X or Y axis. Each label desired is specified by the user.
Reset by a clear command.

If you have set xaxis or yaxis, then set xlevslylevs, the levels specified apply to the labelling
range specified in the xaxis or yaxis command.

This command does not apply to a date/time axis.

68

set xlopts color <thickness < size >> - controls aspects of axis display, where:
ylopts

xlopts controlsthe X Axis

ylopts controlstheY Axis

color: Label color (Default 1)

thickness: Label thickness (Default 4)
size: Label size (Default 0.12)

set xIpos offset side - controls position of x axis|abels, where:
offset offsetininches
side b or t (bottom or top)

set ylpos offset side - Controls position of y axis labels, where:
offset offsetininches
side r or | (right or left)

To control displayed map projections
set mproj proj - Sets current map projection, keywords are:

robinson Robinson projection, requires set lon -180 180, set lat -90 90

latlon thedefault. Lat/lon projection with aspect ratio maintained.

scaled latlon projection where aspect ratio is not maintained. The plot fills the plotting area.
nps north polar stereographic

sps south polar stereographic

off same as scaled, but no map is drawn and axis labels are not interpreted as lat/lon labels.

set mpvalslonmin lonmax latmin latmax
of f
Sets reference longitudes and latitudes for polar stereographic plots. By default, these are set to
the current dimension environment limits. This command overrides that, and allows the data-
reference to be decoupled with the map display. The polar plot will be drawn such that the
region bounded by these longitudes and latitudes will be entirely included in the plot.

GrADS will plot lat/lon lines on polar plots with no labels asyet. To turn this off,
set grid off

To control map drawing:

set mpdset <lowr es|mr eglhiresinmap> - selects base map resolution, where:
lowresisthe default
mres and hir es have state and country outlines
nmap covers only North America

set poli on|off - Selects whether you want political boundaries drawn for the mres or hires
map data sets. The default ison.

set map auto color stylethickness - Draws the map background using the requested line
attributes.

set mpdraw on|off - If off, does not draw the map background. Requested map scaling is still in
force.

69

set grid on | off | style values | horizontal | vertical - Draw or do not draw grid lines using the
specified color and linestyle. Default isto draw grid lines with color 15 (grey) and with
linestyle 5 (dotted). horizontal indicates to only plot the horizontal grid lines; vertical the
vertical grid lines.

All the above settings stay the same until changed by new set commands.

To control annotation

set font number - Selectsthe font for subsequent text operations, where: number =0... 9.

draw titlestring - Draw title at top of graph. Backslash within string denotes new line.

set annot color <thickness>- Sets color and line thicknesses for the above 3 draw commands.
Default iswhite, thickness 6. This command also sets the color and thickness for the axis
border, axis labels, and tickmarks. Axistickmarks and labels are plotted at the specified
thickness minus 1.

To control console display
set display grey|greyscalejcolor <black|white> - Setsthe mode of the display.

By default, the mode is color, where shading and contouring is done with arainbow of colors.
When using a monochrome display, these colors may not map to greyscale in a pleasing way.
When the mode is set to greyscale, contours are displayed using asingle grey level, and
shaded contours are done using a sequence of greyscales.

Y ou may optionally set the hardware background color to black or white. The default is
black.

set display grey white
gives aresult on the display that is very similar to the output produced by gxps.
This command DOES NOT affect hardcopy output.

set background white/black the default is black

To control theframe
set frameon | off |circle - where:

on plots arectangular frame around the clipped region

of f plots no frame

circle plotsarectangular frame for lat-lon projections, plots acircular frame for apolar plot
at the outermost latitude. Used for whole-hemisphere plots only.

To control logo display

set grads on|off - off disables display of the GrADS logo from the screen and printed output.
Reset by clear.

70

20.0 GrADS Functions

The real power of GrADS liesin its data analysis capabilities. These capabilities are accessed
through GrADS internal or user defined external functions (the so-called udfs, see Chapter 21)
applied to an expression (GrADS talk for agrid of data, e.g. var.1(t=1)).

Functions are invoked by name, with their arguments separated by commas and enclosed in
parentheses.

Expressions are typically one of the arguments supplied to afunction. Functions may be nested.
Some functions modify the dimension environment when they operate.

Thefollowing list of GrADS functions is grouped al phabetically under descriptive categories.

Averaging Functions

aave
aave(expr,xdiml,xdim2,ydiml,ydim2)
Takes an area average over an X-Y region. Usually better than using nested ave functions.

expr any valid GrADS expression.

xdiml starting dimension expression for the X dimension.

xdim2 ending dimension expression for the X dimension.

ydiml starting dimension expression for the Y dimension.

ydim2 ending dimension expression for the Y dimension.
Usage Notes

1) In the absence of missing data values, aave gives the same result as nested ave functionsin the X
and Y dimensions:

ave(ave(expr,x=1,x=72),y=1,y=46)
being equivalent to:
aave(expr,x=1,x=72,y=1,y=46)
in terms of the numerical result. The aave function is more efficient.

2) When there are missing data values, the aave function does not return the same result as nested
ave functions. To seethis, consider the small grid:

6 18 3 5
10 10 10 10
12 U U U

where U represents the missing datavalue. |f we apply nested ave functions, the inner ave will
provide row averages of 8, 10, and 12. When the outside ave is applied, the result will be an
average of 10. When aaveis used, all the values participate equally (in this case, we are assuming
no weights applied to the final average), and the result is 84/9 or about 9.33.

71

3) The aave function assumes that the world coordinates are longitude in the X dimension and
latitude in the Y dimension, and does weighting in the latitude dimension by the delta of the sin of
the latitudes. Weighting is also performed appropriately for unequally spaced grids.

4) The aave function always does its average to the exact boundaries specified, in world coordinates.
Thisis somewhat different from the ave function, where the -b flag is used to get this behavior. If
the boundaries specified via the dimension expressions do not fall on grid boundaries, then the
boundary values are weighted appropriately in the average.

When grid coordinates are used in the dimensions expressions, then they are converted to world
coordinates for the boundary to be determined. This conversion is done using the scaling of the
default file. Note that the conversion is done using the outside grid boundary, rather than the grid
center. For example:

aave(expr x=1,x=72,y=1,y=46)

Here the boundary would be determined by using the grid values 0.5, 72.5, 0.5, and 46.5 which
would be converted to world coordinates. If we assume that x=1 is O degrees longitude and x=72
is 355 degrees longitude, then the averaging boundary would be -2.5 to 357.5 degrees, which
would cover the earth. IntheY dimension, when the boundary is beyond the pole, the aave
function recognizes this and weights appropriately.

Examples

1) Seethetloop function for an example of creating atime series of area averages.
2) An example of taking an area average of data only over land, given amask grid:

aave(maskout(p,mask.3(t=1)),x=1,x=72,y=1,y=46)
In this case, it is assumed the mask grid has negative values at ocean points.

amean
amean(expr, xdiml,xdim2,ydim1,ydim2)

Works exactly like aave, except that areaweighting is disabled, i.e., the mean isastraight sum / #
points.

ave
ave(expr,dexprl1,dexpr2<,tincr<,flags>>)

Averages the result of expr over the specified range of dimensions starting at dexpr1 and ending at
dexpr2. If the averaging dimension istime, an optional time increment tincr may be specified.

expr isany valid GrADS expression.

dexprl isthe start point for the average, specified as a standard GrADS dimension
expression.

dexpr2 isthe end point for the average. The dimensions of dexpr1 and dexpr2 must match.

tincr isatimeincrement for the average, if dexprl and dexpr2 are time dimension.

flags Thefollowing flags are valid:

b The boundary flag indicates the average should be taken to the exact boundaries specified
in dexprl and dexpr2, rather than nearest grid points. See Usage Notes below.

72

Usage Notes

1) Thelimitsand interval over which to take the average are determined by the scaling of the default
file. Conversions of dexprl and dexpr2 to grid coordinates are performed using the scaling of the
default file. See the Examples below for an example of what this means.

2) The averageisweighted for non-linear grid intervals. Averages over latitude are weighted by the
delta of the sine of the latitudes at the edge of the grid box. The edges of the grid box are always
defined as being the midpoint between adjacent grid points.

3) If dexprl and dexpr2 are specified in world coordinates, the coordinates are converted to the
nearest integer grid coordinates based on the scaling of the default file. The averageisthen
performed over the range of these grid coordinates. The end points are given normal weighting,
unless the -b flag is specified.

Examples

All the examples use the two example descriptor files given at the beginning of this section. For the
following examples, the dimension environment is X-Y varying; Z-T are fixed.

1) Consider the following average, when the default file isfile #1.
ave(z.2,t=1,t=10)

We are averaging a variable from file #2, but using the scaling from file #1. File#1 hasatime

interval of 6 hours, but file #2 hasatime interval of 12 hours. The average will thus attempt to

access data from file #2 for times that are not available, and an error will occur. To avoid this,
the default file should be set to file #2: set dfile 2

2) The average:
ave(z,t=1,t=120,4)

will average only 00Z reports from file #1, since the time increment is 4, which for thisfileis 24
hours.

3) If you attempt to take a zonal average as follows:
ave(z,lon=0,lon=360)

the world coordinates will be converted to grid coordinates, here X varying from 1 to 181, and the
grid point at longitude O (and 360) will be used twice in the average. To have the end points of
this average weighted properly, use the -b flag:

ave(z,lon=0,lon=360,-b)
or average using the grid coordinates directly:
ave(z,x=1,x=180)
4) You can nest averaging operations:
ave(ave(z,x=1,x=180),y=1,y=46)

In this case, to take an areal average. Note that for areal averaging, the aave function is better.
See the aave function description.

When nesting averages, the order of the nesting can have a dramatic affect on performance. Keep
in mind the ordering of the datain a GrADSfile: X variesthe fastest, then Y, then Z, then T.
When nesting averages, put the faster varying dimension within the inner average:

73

set lon -90

set lat -90 90

set lev 1000 100

d ave(ave(t,x=1,x=180),t=1,t=20)

This average would be more efficient than, for example:
ave(ave(t,t=1,t=20),x=1,x=180)
athough the final numerical result would be the same.

5) The use of the define command can make certain operations much more efficient. 1f you want to
calculate standard deviation, for example:

sgrt(ave(pow(ave(z,t=1,t=20)-z,2),t=1,t=20))

would be correct, but the inside average would be calculated 20 times. Defining theinside
average in advance will be substantially faster:

define zave = ave(z,t=1,t=20)

d sgrt(ave(pow(zave-z,2),t=1,t=20))
mean
mean(expr,dexpr1,dexpr2<,tincr<,flags>>)

Works exactly like ave, except that areaweighting isdisabled, i.e., the mean isastraight sum/ #
points.

vint
vint(expr,psexpr,top)
Performs a mass-weighted vertical integral in mb pressure coordinates, where:

expr A GrADS expression for the quantity to be integrated.
psexpr An expression yielding the surface pressure, in mb, which will be used to bound the

integration on the bottom.
top A constant, giving the bounding top pressure, in mb. This value cannot be provided as an
expression.

The calculation is a sum of the mass-weighted layers:
1 > exprAp...
g

where the bounds are the surface pressure on the bottom and the indicated top value on thetop. The
summation is done for each layer present that is between the bounds. The layers are determined by
the different levels of the Z dimension from the default file. Each layer is considered to be from the
midpoints between the levels actually present, and is assumed to have the same value throughout the
layer, namely the value of the gridpoint at the middle of the layer.

Usage Notes

1) Sincethe summation is done using the Z levels from the default file, it is important that the default
file have the same Z dimension coordinates as the expr.

74

2) Levelsof databelow and above the bounds of the summation (surface pressure on bottom; top
value on the top) are ignored, even if present.

3) Itisassumed the world dimension values for the Z dimension are mb pressure values. The units
of g are such that when the expression integrated is specific humidity (q) in units of g/g, the result
is g of water per square meter, or essentially precipitable water in mm.

4) Itisusualy agood ideato make the top pressure value to be at the top of alayer. For example, if
the default file (and the data) have pressure levels of ...,500,400,300,250,... then a good value for
top might be 275, the value at the top of the layer that extends from 350 to 275 mb.

5) Thevint function operates only in an X-Y varying dimension environment.

Examples
1) A typical use of vint might be:
vint(q,ps,275)

to integrate specific humidity to obtain precipitable water, in mm.

Filtering Functions

smth9
smth9(expr)
Performs a 9 point smoothing to the gridded result of the expr.

Usage Notes

1) Theresult at each grid point is aweighted average of the grid point plus the 8 surrounding points.
The center point receives aweight of 1.0, the points at each side and above and below receive a
weight of 0.5, and corner points receive aweight of 0.3.

2) All 9 points are multiplied by their weights and summed, then divided by the total weight to
obtain the smoothed value. Any missing data points are not included in the sum; points beyond
the grid boundary are considered to be missing. Thus the final result may be the result of an
averaging with less than 9 points.

3) If the gridded datais 1-Dimensional, the result is a 3 point smoothing.

Finite Difference Functions

cdiff
cdiff(expr,dim)

Performs a centred difference operation on expr in the direction specified by dim. The differenceis
donein the grid space, and no adjustment is performed for unequally spaced grids. The result value
at each grid point is the value at the grid point plus one minus the value at the grid point minus one.
The dim argument specifies the dimension over which the difference isto be taken, and isasingle
character: X,Y,Z, orT.

75

Result values at the grid boundaries are set to missing.

Examples
1) The cdiff function may be used to duplicate the calculation done by the hcurl function:

define dv = cdiff(v,x)

define dx = cdiff(lon,x)* 3.1416/180

define du = cdiff(u* cos(lat* 3.1416/180),y)
definedy = cdiff(lat,y)* 3.1416/180

display (dv/dx-du/dy)/(6.37e6* cos(lat* 3.1416/180))

The above example assumes an X-Y varying dimension environment. Note that theintrinsic
variables lat and lon give results in degrees and must be converted to radians in the calcul ation.
Also note the radius of the earth is assumed to be 6.37e6 meters thus the U and V winds are
assumed to have units of m/sec.

2) Temperature advection can be calculated using the cdiff function as follows:

define dtx = cdiff(t,x)

define dty = cdiff(t,y)

define dx = cdiff(lon,x)* 3.1416/180

define dy = cdiff(lat,y)* 3.1416/180

display -1*((u*dtx)/(cos(lat* 3.1416/180)* dx) + v*dty/dy)/6.37e6

where the variablet istemperature, u is the U component of the wind, and v isthe V component
of the wind.

Grid Functions

const

const(expr,constant<,flag>)

Some or all of the valuesin expr are set to the constant value, depending on the value of flag
expr A valid GrADS expression.
constant

A constant, given as an integer or floating point value. The value will be treated as floating
point.

flag If noflagis specified, all the non-missing data valuesin expr are set to the constant
value to form theresult. Missing data values are preserved as missing.

Other flag values:

u All missing data values are set to the constant value. Non-missing data remains unchanged.
a All possible data valuesin the result are set to the constant value, including missing data
values.

Usage Notes
1) Thisfunction operates on both gridded and station data.

76

Examples

1) The const function may be used to assign a new value to missing data, so that missing data may
participate in operations:

const(z,0.0,-u)

2) Theconst function is useful when displaying plots using the linefill graphics output type when
one of the lines needs to be a straight horizontal line:

set lon -90

set lat -90 90

set gxout linefill

set lev 500

display const(t,-20);t-273.16

3) The const function may be used to calculate the fraction of the globe covered by some value of
interest. Inthis case, the portion of the globe covered by precipitation greater than 10 mm/day is
calculated as atime series:

set lon 0 360

set lat -90 90

sett 1last

define ones = const(const(maskout(p,p-10),1),0,-u)
setx 1

setyl

display tloop(aave(ones,lon=0,lon=360,lat=0,lat=360))

Note that we first create a defined array that contains 1 wherever the precip valueis greater than
10, and O whenever the precip valueislessthan 10. Thisis done via nested functions, where we
first use the maskout function to set all valueslessthan 10 to missing. We then use aconst
function with no arguments to set all non-missing valuesto 1, then use a const function with the -
u flag to set all the missing data valuesto 0. The aave function is used to calculate an area
weighted average. Since we are averaging zeros and ones, the result is the fraction of the area
where there are ones. See the tloop function for a description of how to perform time series of
areal averages.

maskout
maskout(expr,mask)
Wherever the mask values are less than zero, the valuesin expr are set to the missing data value.

Works with gridded or station data. Where mask values are positive, the expr values are not
modified. Thusthe result of maskout is datawith a possibly increased number of missing data
values. The maskout function, in spite of its apparent simplicity, is extremely useful.

Examples

1) Seethe Examplesfor the const function for a description of using maskout to calculate the
percentage of the globe covered by precipitation.

77

2) The maskout function can be used to cause part of the data to be ignored while doing another
calculation. For example, if we have aland-sea mask, where sea values are negative, and we want
to take some areal average of a quantity only over land:

d aave(maskout(p,mask.2),lon=0,lon=360,lat=0,lat=90)

3) People frequently have trouble using a mask grid, because it is often put into a separate file, and
given some arbitrary date/time and level. Thus, it is often necessary to locally override the
dimension environment while using the mask grid:

d aave(maskout(p,mask.2(t=1)),lon=0,lon=360,lat=0,lat=90)

would probably be how Example 2 would have to be expressed in order to work, with the local
override of t=1 specified on the mask data. See the documentation on how GrADS evaluates
expressions within the dimension environment for more information.

skip
skip(expr,skipx,skipy)

Sets alternating values of the expr to the missing data value. Thisfunction is used while displaying
wind arrows or bar bs to thin the number of arrows or barbs.

expr A grid expression.

skipx Skip factor in the X direction.

skipy Number of grid pointsto skipinthe Y direction.
Examples

1) Todisplay every other grid point in both the X and Y direction:
d skip(u,2,2);v

2) Todisplay every grid point in the X direction, but every 5" grid point in the Y direction:
d skip(u,1,5);v

Note that it is not necessary to use the skip function on both the U and V wind components; it is
sufficient to populate only one component with missing data val ues to suppress the plotting of the
wind arrow or barb.

Math Functions

abs
abs(expr)

Takes the absolute value of the result of expr. Operates on both gridded and station data. Missing
data values do not participate.

acos

acos(expr)

78

Applies the cos® function to the result of expr. Values from expr that exceed 1 or are less than -1 are
set to missing. Theresult of the acos function isin radians.

asin

asin(expr)

Appliesthe sin™ function to the result of expr. Values of expr that exceed 1 or are lessthan -1 are
set to missing in the final result. The result of the asin function isin radians.

atan2
atan2(exprl,expr2)

Applies the tan™ function to the result of the two expressions, using the formula:

tanezz

X

wherey isexprl and x isexpr2. Situations where x and y are both zero are valid; the result is
arbitrarily set to zero. Theresult of the atan function isin radians.

Ccos

cos(expr)

Takes the cosine of the expr. Values are assumed to be in radians. Works on both gridded and
station data.

exp

exp(expr)
Performs the €**x operation, where expr isx. Works on both gridded and station data.

gint

gint(expr)
General integral, same as ave except do not divide by the total area

log

log(expr)

Takes the natural logarithm of the expression. May be used with gridded or station data. Values
less than or equal to zero are set to missing in the result.

log10
log10(expr)

79

Takes the logarithm base 10 of the expression. May be used with gridded or station data. Vaues
less than or equal to zero are set to missing in the result.

pow
pow(exprl,expr2)

The pow function raises the values of expr1 to the power of expr2. No error checking is performed
for invalid values in the operands. This function works on both gridded and station data.

Examples

1) To square some vaue:
pow(expr,2)

2) To duplicate the operation of the mag function:
sqrt(pow(u,2)+pow(v,2))

sin
sin(expr)

Takes the sin of the provided expression. It is assumed the expression isin radians. Result values
areintherange-1to 1. Thisfunction works on both gridded and station data.

sgrt
sqrt(expr)

Takes the square root of the result of the expr. This function works on both gridded and station data.
Valuesin expr that are less than zero are set to missing in the resullt.

tan
tan(expr)

Applies the trigonometric tangent function to the expr which is assumed to be in radians. Operates
on both gridded and station data.

Meteorological Functions

tvrh2q
tvrh2q(tvexpr,rhexpr)

Given virtual temperature and relative humidity, tvrh2q returns specific humidity, g, in g/g.
Specificaly:

tvexpr A valid GrADS expression where the result is virtual temperature, in Kelvin.
rhexpr A GrADS expression that resultsin relative humidity, in percent (from 0 to 100).

This function works only on gridded data.

80

Usage Notes

1) The conversion formularequires apressurein mb. tvrh2q assumes that the Z coordinate system
ispressurein mb. If Z isavarying dimension, the pressure valid at each grid point isused. When
Z isafixed dimension, the Z value from the current dimension environment is used.

Notethat it is possible to provide values from an incorrect pressure level by overriding the current
dimension environment:

set lev 500
d tvr h2q(tv(lev=850),r h(lev=850))

In this case, the tvrh2q function would assume a pressure of 500mb, which is the current
dimension environment setting for the Z dimension. However, we are providing data from the
850mb level, so the function will produce incorrect results.

tvrh2t
tvrh2t(tvexpr,rhexpr)

Given virtual temperature and relative humidity, tvrh2t returns the temperature in degrees Kelvin.
The operation of this function is the same as tvrh2q; refer to the above description for more
information.

Special Purpose Functions

tloop
tloop(expr)

When time is avarying dimension in the dimension environment, the tloop function evaluates the
expr at fixed times, then reconstructs the time series to obtain afinal result that istime varying. The
tloop function is required due to the implementation of the GrADS expression evaluation rules, and
the implementation of certain other functions. The tloop function can also improve performance for
certain calculations.

The tloop function is provided as away to obtain time series from functions that themselves are not
implemented to be able to operate when timeis avarying dimension. See the examples below.

Usage Notes

1) Thetloop function loops through time based on the time increment of the default file; it isthus
important to have the default file set appropriately.

2) Thetloop function and the define command work very similarly. In many cases, the define
command can be used to obtain the same result as using tloop. In fact, the define command can
be even more useful along those lines, since it also loops through the Z dimension, in effect
creating a zloop function. See the define command for more information.

81

Examples

1)

2)

3)

A typical application of the tloop function is to calculate atime series of areal averages using the
aave function. Since the aave function will not work when time is a varying dimension, the use of
tloop isrequired:

setx 1

setyl

settl131

d tloop(aave(ts,lon=0,lo0n=360,lat=-90,lat=90))

Note that the dimension environment is set up to reflect the kind of plot desired, namely aline plot
where timeisthe varying dimension. Thusit is necessary to fix the X and Y dimensions; the
values of those dimensions in this case are not relevant. Using define can achieve the same effect,
i.e,

define t=aave(ts,lon=0,lon=360,lat=-90,lat=90)
dt
The tloop function can be used to smooth in time:

Set lon -180 0

set lat 40

set lev 500

sett 328

d tloop(ave(z,t-2,t+2))

In this example, we are plotting a time-longitude cross section, where each timeisa5 time period
mean centred at that time.

If we wanted to display atime-longitude cross section (X and T varying), with the data being
averaged over latitude, the’standard’ way to do this might be:

set lon -1800

set lat 40

set lev 500

sett131

d ave(z,lat=20,lat=40)

This calculation could be fairly time consuming, since to perform the average, alongitude-time
section is obtained at each latitude. If the time period islong, then thiswould be a very inefficient
operation, due to the ordering of datain atypical GrADS data set. The tloop function might
substantially improve the performance of this cal culation:

d tloop(ave(z,lat=20,lat=40))

since the average is then done at each fixed time, and is thus just an average of X varying data
over Y. Thusthe tloop function hereis simply being used to force a different ordering to the
calculation, although the result is the same.

82

Station Data Functions

gr2stn
gr2stn(grid_expr,stn_expr)
Performs an interpolation from grid space back to station locations, where:

grid_expr isany valid GrADS expression that gives agrid result. The interpolation will
be done using this gridded data.

stn_expr isany valid GrADS expression that gives a station dataresult. The interpolation
will be done to these station locations, the value of the station datais not used.

The result of the function is station data. The interpolation is done bi-linearly within the grid space.
No weighting is done to account for the world coordinate systems.

Examples

1) To examine the difference between an analysis (i.e., gridded data) and the original observations,
one could:

dt.3-grz2stn(t.1,t.3)

wherefile 1 is gridded data, and file 3 is station data. The result would display as differences at
the station locations.

2) If one wanted to display the difference calculated in Example 1 as a contour field, one can use the
oacr es function to do a quick analysis of the station values:

d oacres(t.1,t.3-gr 2stn(t.1,t.3))

oacres
oacres(grid_expr,stn_expr<,radii<first guess>>)

A Cressman objective analysisis performed on the station data to yield a gridded result representing
the station data:

grid_expr Anexpression that has a gridded dataresult. The actual values of thisgrid are
ignored; the grid is used as atemplate to perform the analysis. The scaling of this grid must be

linear in lat-lon.
stn_expr Anexpression that has a station data result. The station data is analyzed to the grid.
radii Optional radii of influence. Multiple radii are usually provided, separated by

commas. If not provided, default radii are used, in grid units: 10,7,4,2,1. The third radius
specified is special, in that any grid points that do not have stations within that radius are set to
the missing data value. See below for adiscussion of the radii of influence.

The Cressman Analysis scheme is described in a paper in Monthly Weather Review, 1959. In
summary, multiple passes are made through the grid at subsequently lower radii of influence. At
each pass, anew valueis determined for each grid point by arriving at a correction factor for that grid
point. This correction factor is determined by looking at each station within the radius of influence
from the grid point. For each such station, an error is determined as the difference between the
station value and a value arrived by interpolation from the grid to that station. A distance weighted
formulais then applied to all such errors within the radius of influence of the grid point to arrive at a

83

correction value for that grid point. The correction factors are applied to all grid points before the
next pass is made.

Usage Notes
1) The oacres function can be quite slow to execute, depending on grid and station data density.

2) The Cressman Analysis scheme can be unstable if the grid density is substantialy higher than the
station data density (i.e., far more grid points than station data points). In such cases, the analysis
can produce extremain the grid values that are not realistic. It isthus suggested that you examine
the results of oacres and compare them to the station data to ensure they meet your needs.

3) Ingeneral, objective analysisis a complex topic, and many schemes for doing it have been
developed over the years. The oacr es function is provided more as a quick-look feature rather
than arigorous analysis scheme. If you have specific analysis requirements, consider doing your
objective analysis outside of GrADS with special purpose programs.

Examples

1) Inthe simplest case:
oacres(ts,ts.2)

2) To specify your own radii of influence:
oacres(tsts.2,12,8,5,4,3,2,1)

3) Setting the first guessin oacres

oacres setstheinitial value of the analysis grid to the arithmetic average of the obsin the area.
For positive definite quantities like precipitation, this can produce an unrealistic analysisin
regions of no obs (e.g., no rain is better guess than average rain).

The call to oacres (stands for Cressman r** 2 scan analysis) has the form,
d oacres(grid,obs,r1,r2,r3,...,r 30)
where:

grid isagrid to which the obs will be analyzed to
obs isthe obs"grid"
ri,...r30 are the scan radii in GRID UNITS.

The default scan radii are:

r1=10.0
r2=7.0
r3=4.0
r4=2.0
r5=1.0

or fiveradii. Thisisgood for meteorological fields, but may not yield a desirable analysis for
hydrologic fields which are not as continuous. The number of radii can be changed, up to a
maximum of 30, to accommaodate the requirements of different types of station data.

To change the first guess, set the penultimater to -1 and the last r to the desired first guess. For
example,

"d oacres(pr.1,pr.2,54,-1,-0.01)

would do an analysis of the pr.2 obsto the pr.1 grid with 2 scan radii of 5 and 4 grid unitswith a
first guess of -0.01. A first guessof O can be used to reduce the tendency of oacresto create
artificial bullseyes for spatially discontinuous fields such as precipitation.

Errorsin setting up the first guess produce the default oacres.

sthave
stnave(expr,dexpr1,dexpr2<,-m cnt>)

Takes an average of station data over time:

expr A valid GrADS expression that gives a station data result.

dexprl A dimension expression giving the starting time for the average.

dexpr2 A dimension expression giving the ending time for the average.

m cnt Optional minimal data count for the average to be taken. If, in the time series, there

are fewer available data points for a particular station than the cnt value, then the result for that
station isthe missing datavalue. The default cnt valueis 1 (ie, even 1 valid station in atime
series of even thousands of points would give avalid result for that station).

Usage Notes

1) Thetimes arelooped through based on the timeinterval of the default file. Itisthusvery
important to set the default file to that of the station datafile, or afile with the same time interval,
or not all station reports will beincluded in the average.

2) If there is more than one report per station for a particular time, those reports are averaged equally
to arrive at asingle value for that time. The final average consists of each report for each time
being averaged, with missing times not included in the average.

3) Reportsfrom different times are considered to be for the same station when the station id, the
latitude, and the longitude all match exactly.
Examples
1) A typical usage of the stnave function would be:
stnave(ts,t=1,t=20,-m 10)

Here an average is taken over 20 times, and if there are fewer than 10 reports for a station then
that station will be missing in the final result.

stnmin
stnmin(expr,dexpr 1,dexpr2<,-m cnt)

Examines atime series of station data and returns the minimum value encountered for each station.
Operands and usage are the same as the stnave function; see above.

sthmax
stnmax(expr,dexpr1,dexpr2<,-m cnt)

Examines atime series of station data and returns the maximum value encountered for each station.
Operands and usage are the same as the sthave function; see above.

85

Vector Functions

hcurl
hcurl(uexpr,vexpr)

Calculates the vertical component of the curl (i.e., vorticity) at each grid point using finite
differencing on the grids provided. It isassumed that uexpr gives the U Wind component, and that
vexpr provides the V Wind component.

Usage Notes

1) The algorithm used for the finite difference calculation is described as an Example for the cdiff
function.

2) Thefunction assumes an X-Y varying dimension environment, and will not operate unlessthat is
the case. The define command can be used in conjunction with the hcurl function to create 3 or 4
dimensional fields of vorticity, from which vertical cross-sections could be displayed.

3) The boundaries of the grid are set to missing.
4) The radius of the earth used in the calculation is in meters; thus the units of the wind expressions
provided would normally be m/s.
Examples
1) Todisplay thevorticity:
d heurl(u,v)

2) If you want to display avertical cross section of vorticity, you first need to calculate it over a 3-
Dimensional region:

set lon 0 360
set lat -90 90
set lev 1000 100
definevort = hcurl(u,v)
set lon -90
display vort

hdivg

hdivg(uexpr,vexpr)

Calculates the horizontal divergence using finite differencing. Exactly the same ashcurl in all other
respects; see the Usage Notes and Examples above.

Usage Notes

1) The numerical stability of calculating horizontal divergence using finite differencing is very low.
Please use the function with caution.

mag
mag(uexpr,vexpr)

86

Performs the calculation: sgrt(uexpr*uexpr+vexpr*vexpr). May be used with gridded or station
data.

87

21.0 User Defined Functions (UDFs):

Users may write their own GrADS functions in the computer language of their choice, and have them
available from the GrADS expression facility (viathe display command). Some possible user
defined functions might be:

« filtering functions
* gridinterpolation functions
 thermodynamic functions

Y ou may write afunction that can be invoked viathe GrADs expression facility. Thisfunction may
be written in any computer language, and may perform any desired 1/0O, calculations, etc. You should
read the following documentation carefully to understand the restrictionsto this capability.

Overview of User Defined Functions

The steps that GrADS uses to invoke a user defined function are:

1) When GrADS isfirst started, it reads afile that describes the user defined functions. Thisfileis
called the "user defined function table'.

2) When auser function isinvoked viathe display command expression, GrADS parses the
arguments to the functions, obtains the results of any expressions, and writes the resultant data to
a’function datatransfer file'.

Please note that In a user-defined function adding the double quote (“”) around a char argument
passes the string directly without the usual conversion to lower case and removal of blanks, e.g.,

d grhilo(slp,F8.2,"This is the Label",0.25)

Here F8.2is passed as f8.2, but the second character string would not be converted to
thisisthelabel

3) A user written program isthen invoked. This program may read the function data transfer file, do
any desired processing, then write the result into a function result file.

4) GrADS will read the function result file and generate the internal objects necessary for this result
to participate in the remainder of the expression evaluation.
The user defined function table

The user defined function table is aflat text file that contains information about each user defined
function. There are five records for each defined function, and the file may contains descriptions for
any number of functions.

The 5 records are;
Record 1: Thisrecord contains several blank delimited fields;

Field 1: The name of the function, 1-8 characters, beginning with aletter. The name should
beinlower case. Note that function names are not case dependent, and that GrADS
converts al expression to lower case before evaluation.

Field2: Aninteger value, specifying the minimum number of arguments that the function
may have.

88

Field 3: Aninteger value, specifying the maximum number of arguments that the function
may have. This may not be more than 8.
Field 4to N: A keyword describing the data type of each argument:
expr: The argument is an expression.
value: The argument is adata value.
char: The argument is a character string.

Record 2: Thisrecord contains several blank delimited option keywords. Current options:
sequential GrADS will write data to the function data transfer filein FORTRAN
sequential unformatted records.
direct GrADSwill write data to the function data transfer file without any record
descriptor words.
Note: sequential istypicaly appropriateif the function routine is written in FORTRAN.
direct ismore appropriate for C.

Record 3: Thisrecord contains the file name of the function executable routine. This routine
will be invoked asits own separate process viathe ' system’ call. Do a’man system’ if you
would like more information on the rules governing this system feature.

Record 4: Thisrecord contains the file name of the function datatransfer file. Thisisthefile
that GrADS will write data to before invoking the user function executable, and istypically the
file the function will read to obtain the data to be operated upon.

Record 5: Thisrecord contains the file name of the function result file. The function writes the
result of its operationsinto thisfile in a specified format, and GrADS reads this file to obtain
the result of the function calculation.

The user function definition tableitself is pointed to by the environment variable GAUDFT. If this
variable is not set, the function table will not be read. An example of setting thisvariableis:

setenv GAUDFT /usr/local/grads/udft

User defined functions have precedence over GrADS intrinsic functions, thus a user defined function
can be set up to replace a GrADS function. Be sure you do not do this inadvertently by choosing a
function name already in use by GrADS.

Format of the function data transfer file

The function data transfer file contains a single header record, then contains one or more records
representing each argument to the function. The user function routine will know what data typesto
expect (since they will be specified in the UDFT), and can read the file in a predictable way. Thefile
format may seem somewhat complex at first, but later examples will show that it isnot as bad as it
may seem at first glance.

Header record: The header record always contains 20 floating point numbers. The record will
aways be the same size. Values defined in thisrecord are:

1% value: Number of args user used when invoking the function

2" value: Set to zero, to indicate this particular transfer file format. The function should test this
value, and return an error if non-zero, in order to be compatible with future enhancements to
thisfile format.

Values 2 to 20: Reserved for future use.

89

Argrecords. Each argument type will result in a specific set of records being written out. The
records are written in the order that the arguments are presented. For each data type:

value: A record will be written containing a single floating point value

char: A record will be written containing the character value of the particular argument. The
length of the record will be 80 bytes. If the argument is longer, the trailing bytes will be lost. 1f
the argument is shorter, it will be padded with blanks. Note that the argument will already be
processed by the GrADS expression parser to some extent, which will convert all characters to
lower case and remove any blanks.

expr: When the argument is an expression, GrADS will evaluate the expression and write the
result to the transfer file. Currently only gridded datais supported. Several records will be
written to the file for each expr type argument:

1% record: The grid header record. This record contains 20 values, all floating point. Note
that some of the values are essentially integer, but for convenience they are written asa
floating point array. Appropriate care should be taken in converting these values back to
integer.

1: Undefined value for the grid
2: i dimension (idim). Dimensions are:
1- None
0 - X dimension (lon)
1-Y dimension (lat)
2-Z dimension (lev)
3-T dimension (time)
3: jdimension (jdim). Note: if idimand jdim are-1, thegridisasinglevalue. If jdimis-
1, thegridisa1-D grid.
4. number of elementsin thei direction (isiz)
5: number of elementsin thej direction (jsiz)
Array isdimensioned (isiz,jsiz).
6: i direction linear flag. If O, the dimension has non-linear scaling.
7: j dimension linear flag.
8: istrt. Thisisthe world coordinate value of thefirst i dimension, ONLY if thel
dimension has linear scaling and thei dimension is not time.
9: iincr. Increment in thei dimension of the world coordinate. ONLY if thei dimension
has linear scaling.
10: jstrt. World coordinate of the first j dimension, only if thej dimension has linear
scaling, and the j dimension is not time.
11: jincr. World coordinate increment for j dimension.
12: If one of the dimensionsistime, values 12 to 16 are defined as the start time:
12 isthe start year.
13: start month
14: start day
15: start hour
16: start minute
17: Values 17 and 18 contain the time increment for the time dimension.
17 contains the increment in minutes.
18: increment in months. (GrADS handles all incrementsin terms of minutes and months).
19,20: reserved

2" record: This contains the grid data. It isisiz*jsiz number of floating point elements.

90

Possible 3" record. If thei or j dimension scaling is non-linear, the world coordinate val ues at
each integral i(j) dimension value iswritten. Thus, if thei dimension is non-linear, isiz
number of elements will be written. If thej dimension is non-linear (and the i dimension IS
linear), then jsiz elements will be written.

Possible 4" record. Only written if both thei and j dimension have non-linear scaling. In this
case, thisrecord contains the j dimension world coordinate values; jsiz number of floating
point elements.

The existence of the 3 or 4™ records can only be determined by examining the grid header record
contents. Note that the time dimension is always linear as currently implemented in GrADS.

Note that it is not necessary for the function to handle all possible perturbations of argument data.
The function may test for certain conditions and return an error code if those conditions are not met.

Format of the function result file

The function result file returns the result of afunctionto GrADS. It isthe responsibility of the
function process to write thisfile in the proper format. A file written out in an improper format may
cause GrADSto crash, or to produce incorrect results.

Theresult of afunctionisalwaysagrid. Thus, the format of the function result fileis:
First, a header record.

This record contains 20 floating point values. The first value contains the return code. Any
non-zero value causes GrADS to assume the function detected an error, and GrADS does not
read any further for output. Value 2 should currently always be set to zero (indicating a simple
result file), and values 3 to 20 are reserved for future use.

Next, a set of grid records

These records are in exactly the same order and format as in the data transfer file. (Note that if
the function is returning a grid that has the same scaling and dimension environment as an
argument grid, the records for that argument grid may be written out to the result file
unmodified—only the data need change).

Example: Linear Regression Function

This is a simple example of what a user defined function might look like in FORTRAN. This is a
simple linear regression function, which only handles a 1-D grid and takes one argument, and
expression.

First, the function definition table:

linreg 11 expr
sequential
/mnt/grads/linreg
/mnt/gradg/linreg.out
/mnt/gradg/linreg.in

91

The FORTRAN program is compiled, and named linreg, and placed in /mnt/grads. The program
source code is:

(9]

(9]

(9]

(¢

(¢

(¢]

OO0

real val s(20), oval s(20)
real x(10000), y(10000)

open (8,file="/mt/grads/linreg.out’,form unformatted’)
open (10,file="/mt/grads/linreg.in ,form unformatted’)

read (8)

read (8) vals
idim= val s(2)
jdim= val s(3)

If thisis not a 1-D grid, wite error nessage and exit

if (idimeq.-1 .or. jdimne.-1) then
wite (6,*) "Error fromlinreg: Invalid dinmension environment’
vals(1l) =1
wite (10) vals
stop
endi f

If the grid is too big, wite error nessage and exit

isiz = vals(4)
if (isiz.gt.10000) then
wite (6,*) "Error fromlinreg: Gid too big
vals(1l) =1
wite (10) vals
st op
endi f

Read the data
read (8) (y(i),i=1,isiz)
Read non-linear scaling if necessary

ilin = val s(6)
if (ilin.eqg.0) then
read (8) (x(i),i=1,isiz)
el se
do 100 i=1,isiz
x(i) =i

100 conti nue

endi f
Do |inear regression

call fit (x,y,isiz, a,b)
Fill in data val ues

do 110 i=1,isiz
y(i) = a+x(i)*b

110 conti nue

wite out return info. The header and the non-linear scaling
info will be the same as what G ADs gave us.

92

oval s(1) = 0.0

wite (10) ovals

wite (10) vals

wite (10) (y(i),i=1,isiz)

if (ilin.eq.0) wite(10) (x(i),i=1,isiz)

stop
end
C
C
SUBROUTI NE FI T(X, Y, NDATA, A, B)
C
C Ais the intercept
C Bis the slope
C
REAL X(NDATA), Y(NDATA)
C
SX = 0.
SY = 0.
ST2 =
B =
DO 12 | = 1, NDATA
SX = SX + X(I)
SY = SY + Y(I)
12 CONTI NUE
SS = FLOAT(NDATA)
SXCOSS = SX/ SS
DO 14 | = 1, NDATA
T = (I) - SXOsSs
ST2 ST + T*T
B=B+T* Y(1)
14 CONTI NUE
B = B/ ST2
A= (SY - SX* B)/SS
RETURN
END

93

22.0 Further Features of GrADS Data Sets

This chapter provides more information on controlling and specifying GrADS data sets. Whereas the
material in Chapter 4 is fundamental to running GrADS, the information presented here gives
enhanced flexibility and control of data sets which many users will not immediately require A full
understanding of the contents of Chapter 4 Using Gr ADS Data Filesis assumed.

File and time group headers
You may tell GrADS that your data file has a header. To do this, include the record in your
descriptor file:

fileheader length

where length is the number of bytesin the header. GrADS will skip past this header, then treat the
file asthough it were anormal GrADS file after that point. Thisoptionisvalid only for GrADS
gridded data sets.

Variable format/structure control

This feature allows control of the structure and format of each variable.
In a GrADS data descriptor file each variable is defined using the following syntax,
vhame nlevs unitsl,units2,unit3,units4 vdesc where:

vname =thenameasitisreferencedin GrADS

nlevs =thenumber of levelsin the vertical or z dimension

units? = asequence of oneto four ints used to define the variable for GRIB processing and
for speciaized handling.

These features are invoked through the units? parameters according to the following syntax:
-1Xx,yy where:

XX = structure
yy = additional attributes
-1 isused to tell GrADS special formatting is happening.

There are four structures supported......
1) xx=10
Data where the variable and levels are transposed, (lon,lat,var lev,time instead of
lon,lat,lev,var time). For example, suppose you have four variables,
u(x.y,z),v(x,y,2),t(xy,2),2(x.y,z)
and you want to write them out in so they can be viewed in GrADS.
In FORTRAN you would have,

par anet er (ni =144, nj =91, nk=18, nt =4)
di mensi on u(ni,nj,nk),v(ni,nj,nk),t(ni,nj,nk),z(ni,nj,nk),dun(ni,nj)
do n=1, nk

call load(u,ni,nj,nk,n,dun

94

write(10) dum
end do
do n=1, nk
call load(v,ni,nj,nk,n,dun
wite(10) dum
end do
do n=1, nk
call load(t,ni,nj,nk,n,dun
wite(10) dum
end do
do n=1, nk
call load(z,ni,nj,nk,n,dun
wite(10) dum
end do
subroutine | oad(a, ni,nj,nk,n, dum
di mensi on a(ni,nj,nk), dum(ni,nj)
do i=1,ni
do j =1, nj
dun(i,j)=a(i,j,n)
end do
end do
return

and the .ctl would look something like:

dset “model.dat
title some model data
undef 0.10000E+16
options sequential
xdef 144 linear 02.5
ydef 91 linear -90 2.0
zdef 18 levels
1000.000 950.000 900.000 850.000 800.000 700.000 600.000 500.000
400.000 300.000 250.000 200.000 150.000 100.000 70.000 50.000
30.000 20.000
tdef 4 linear apr85 1mo
vars4
u 18 0 u component from NASA model
v 18 0 v component from NASA model
t 18 0 temperature from NASA model
z 18 0 geopotential height from NASA model
endvars

However, in NASA GCM “phoenix” formafor the upper air prog variables only, they have,

do n=1, nk
call load(u,ni,nj,nk,n,dun
wite(10) dum
call load(v,ni,nj,nk,n,dun
wite(10) dum
call load(t,ni,nj,nk,n,dun
wite(10) dum
call load(z,ni,nj,nk,n,dun
wite(10) dum

end do

Thus, variables and z are transposed or all variables are written out one level at a time....

95

To make matterstrickier, for the upper air diagnostics, the NASA format revertsthe GrADS
convention, so now we need to tell GrADS that the var -z transposed is no longer active...

To handle the upper air prog variables, and then upper air diagnostics (e.g., cuheat and clouds), in
the .ctl file we would have:

dset “model.nasa.dat
title some model data from NASA
undef 0.10000E+16
options sequential
xdef 144 linear 02.5
ydef 91 linear -90 2.0
zdef 18 levels
1000.000 950.000 900.000 850.000 800.000 700.000 600.000 500.000
400.000 300.000 250.000 200.000 150.000 100.000 70.000 50.000
30.000 20.000
tdef 4 linear apr85 1mo
vars6
u 18-1,10,1 u component from NASA model
v 18-1,10,1 v component from NASA model
t 18-1,10,1 temperaturefrom NASA model
z 18-1,10,1 geopotential height from NASA model
cuheat 18 -1,10,2 cumulus heating
clouds 18 -1,10,2 cloud fraction
endvars

Thus,

yy = 1 means the variables have been var-z transposed
yy = 2 means the variables are now "normal”

2) xx=20

This handles 4-D variables, i.e., al times for one variable written out in one chunk as opposed to
writing all variables at one time and then all variables at the next time. From the previous
example, let’ s assume you now have data at nt times...

In atypical model you would have,

par aneter (ni =144, nj =91, nk=18)
di mensi on u(ni,nj,nk),v(ni,nj,nk),t(ni,nj,nk),z(ni,nj,nk),dun(ni,nj)
do I =1, nt
C run nodel and update the prog vari abl es
call prog(u,v,t, z)
do n=1, nk
call load(u,ni,nj,nk,n,dun
wite(10) dum
end do
do n=1, nk
call load(v,ni,nj,nk,n,dun
wite(10) dum
end do
do n=1, nk
call load(t,ni,nj,nk,n,dun
write(10) dum
end do
do n=1, nk

96

call load(z, ni,nj,nk,n,dun
write(10) dum
end do
end do

And you’ d have no problem reading the datain GrADS, but suppose you now read the model
output and write out the u,v and t data differently,

par anet er (ni =144, nj =91, nk=18, nt =4)
di mensi on u(ni,nj,nk),v(ni,nj,nk),t(ni,nj,nk),z(ni,nj,nk),dun(ni,nj)

open (10...)
open (12...)
do | =1, nt
Cwite out all the u's
do n=1, nk

read(10) dum
wite(12) dum
end do
do n=1, nk
read(10) dum
end do
do n=1, nk
read(10) dum
end do
do n=1, nk
read(10) dum
end do
end do
rewi nd 10

C nowwite out all the v
do | =1, nt
do n=1, nk
read(10) dum
end do
do n=1, nk
read(10) dum
wite(1l2) dum
end do
do n=1, nk
read(10) dum
end do
do n=1, nk
read(10) dum
end do
end do
rewi nd 10

C nowwite out all the t
do | =1, nt
do n=1, nk
read(10) dum
end do
do n=1, nk
read(10) dum
end do
do n=1, nk
read(10) dum
wite(1l2) dum
end do

97

do n=1, nk
read(10) dum
end do
end do

While this seems unnatura for amodel, some data sets ook like this with several variables
containing all times.

The GrADS .ctl file for the above example, would use:

undef 0.10000E+16
options sequential
xdef 144 linear 02.5
ydef 91 linear -90 2.0
zdef 18 levels
1000.000 950.000 900.000 850.000 800.000 700.000 600.000 500.000
400.000 300.000 250.000 200.000 150.000 100.000 70.000 50.000
30.000 20.000
tdef 4 linear apr85 1mo
vars3
u 18-1,20 u component from NASA model
v 18-1,20 v component from NASA model
t 18-1,20 temperature from NASA model
endvars

The sequential option is set because we wrote the data using unformatted (f77) 1/0.

Now suppose you want to use the template option intime. Useyy to tell GrADS how many times
therearein each file, eg.,

dset "mydate.%y2.dat
options sequential template

tdef 120 linear jan79 1mo
vars3

u 18-1,20,12 u component

v 18 -1,20,12 v component

t 18-1,20,12 temperature all
endvars

yy=12 tells GrADS there are 12 monthsin each file.
3) xx=30

This handles a pathological case were lon and lat are transposed or you have (lat,lon) as opposed
to (lon,lat) data. While this does "work" it isvery inefficient because we didn’t want to make a
big changeto GrADS internal I/O to handle this unusual case.

However, it isuseful for initial inspection and debugging and that’s only what it is designed for.
Here'san example .ctl file

dset ~latlon.dat
titletest case of data lat and lon are transposed a(j,i) vicea(i,j)

98

undef 1e20
xdef 144 linear 0 2.5
ydef 73linear -90 2.5
zdef 1levels 1013
tdef 1 linear 00z1jan1995 12hr
varsl
u 0-1,30 u comp
endvars

4) xx =40
This option handles non float data by internal conversion to floats after the read.
There are two suboptions (yy)

yy=1 -one-byte unsigned ints (0-255)
yy=4 -integer data (4 byte on 32-bit machines and 8-byte on crays)

Thefirst case was to handle GM S data on a CD-ROM from MRI in Tsukuba, Japan. Hereisthe
gms .ctl file:

dset ~1921110.212
undef 1e20
title GMSIR imagery during TOGA COARE
fileheader 500
optionsyrev
xdef 500 linear 130.05 0.1
ydef 300 linear -14.95 0.1
zdef 1levels1013
tdef 1 linear 00Z1nov1992 12hr
varsl
tb 0-1,40,1 IR brightnesstemp - 100 K
endvars

The yy=4 option has been used for integer data representing surface type...

Multiple file time series

GrADS now allows you to handle many actual data files as one GrADSfile, if the individual data
filesarein a GrADS readable format, and if the files are split along time. Intheinitial
implementation, the time(s) that are in each file are indicated by the file name.

An example of this might be hourly data, where each 24 hours has been placed in a separate file.
Each file is named this way:

1may92.dat
2may92.dat
etc.

Y ou indicate to GrADS that there are multiple files in this time series by giving a substitution
template as the file name:

dset % d1% mc%y2.dat

and giving an options record that looks like:

99

optionstemplate

and specifying the time range and increment in the tdef record:
tdef 72 linear 0z1may1993 1hr

GrADS will figure out automatically that there are 24 timesin each file, and what file names
correspond to what times. Asyou display data, GrADS will only open onefile at atime. Asyou
change times such that another fileisreferred to, the open fileis closed, and the new file is opened.

Valid substitutions are;

%y2

%vy4
% ml
% m?2
% mc
%d1
%d2
%hl
%h2
%h3
%f2

%f3

%n2

2 digit year (last 2 digits)

4 digit year

1 or 2 digit month

2 digit month (leading zero if needed)
3 character month abbreviation

1 or 2 digit day

2 digit day

1 or 2 digit hour

2 digit hour

3 digit hour (e.g., 120 or 012)

2 or 3 digit forecast hour

3 digit forecast hour

2 digit minute (leading zero if needed)

for specifying theinitial time (e.g., NWP model output from NMC and FNMOC)

%iy2
%iy4
%iml
%im2
%in2
%imc
%idl
%id2
%ihl
%ih2
%ih3

initial 2 digit year (last 2 digits)

initial 4 digit year

initial 1 or 2 digit month

initial 2 digit month (leading zero if needed)
initial 2 minute (leading zero if needed)
initial 3 character month abbreviation
initial 1 or 2 digit day

initial 2 digit day

initial 1 or 2 digit hour

initial 2 digit hour

initial 3 digit hour

(time increment must be hours)

This support works on all supported GrADS data types (GrADS gridded, GRIB, GrADS station
data). If you specify file format options, the options must apply equally to each file.

The real-time data on DECstations makes use of thisnew feature. See the data descriptor files:

/data/wx/grads/sa.ctl
/data/wx/grads/sar eps.ctl
/data/wx/grads/wx.ctl

for additional examples.

100

Enhanced data formats and structures

The GrADS I/0 layer has been modified to handle extra data structures and types. Thiswasinitially
prompted by a need to work with the NASA GSFC DAO reanalysis and GCM output datain its own
"phoenix" format and the Climate Analysis Center’s Climate Diagnostic Data Base (CDDB).
These options define global characteristics of the datafile......

In the data descriptor file the follow keywords have been added,

theader ttttt
xyheader XxXxxx where:

ttttt = the number of header bytes preceding the actual datafor each time block (e.g., each
4-D lon,lat,lev,var in time)

xxxxx = the number of header bytes which precede the data for each xy block (e.g., a2-D
lon/lat field).

N.B. Using these features requires a detailed understanding of your datal GrADS will read the data
file exactly the way you tell it to! Mistakes here will wreck your results.

A FORTRAN program to automatically build the .ctl file from the NASA phoenix format is available
from fiorino@typhoon.lInl.gov.

101

23.0 Programming GrADS: Using the Scripting Language

The GrADS scripting language, used viathe GrADS run command, provides asimilar capability to
the exec command, except that a script may have variables, flow control, and access GrADS
command output. Scripts may be written to perform avariety of functions, such asallowing auser to
point and click on the screen to select something, to animate any desired quantities, to annotate plots
with information obtained from GrADS query commands.

Overview of the Scripting Language

The scripting language is similar to REXX in implementation. All variables are of type STRING.
Operations are supported on script variables. Flow control is achieved viaif/else/endif and
while/endwhile constructs. Loop flow may be modified by the continue or break commands. Strings
contained in variables or generated via an expression may beissued to GrADS as commands. The
result of those commands (the string that GrADS would have typed on the terminal) is put into a
variable and made available to the script. The language includes support for functions.

Elements of the Language

A script fileis split into records. The end of a script record is determined by either anewline
character (end of record for thefile) or a semicolon (where the semicolon is not contained within a
constant string).

Each script record may be one of the following script record types:

e Assignment

e |If / Else/ Endif

» while/ endwhile/ break / continue

« function header / return

e say/pull

e comment
If ascript record is none of the above, it is assumed to be an statement record, which contains a script
expression. The result of the expression is passed to GrADS as a command for execution. The text
result of the GrADS command is put in the variable 'result’ for examination by the script.

Many of the above record types will contain expressions. Script expression are composed of
operators and operands, where the operands are script variables, function calls, or constants, and the
operators are mathematical, logical, or concatenation operations.

Thereisno’goto’ in thislanguage.

N.B. GrADS needs acarriage return after the last command line in the script file, otherwise GrADS
won't execute this command line.

102

Variables

Script Language variable names are 1 to 8 characters, beginning with an a phabetic character and
containing letters or numbers only. The name is case sensitive.

The contents of ascript variable is always a character string. For some operations, the character
string will be interpreted as a number.

If avariable has not yet been assigned, its value isits name.

If the contents of a variable or string constant are a number in the correct format, certain operators
will perform numeric operations, giving a string result which will aso be a number.

String variables

String variables or string constants are enclosed in either single “ or double “” quotes. For example:
name = ‘Peter Pan’
name = “Peter Pan”

Predefined variables

Some variable names are predefined, it isagood ideato avoid assigning values to these variables.
The following are predefined variables:

lat
lon
lev
result
rec

Global scripting variables

Scripting variables are usually local to the functions they are contained in. Global scripting variables
areaso available. They are specified viathe variable name Any variable name starting with an
underscore (_) will be assumed to be a global variable, and will keep its value throughout an entire
script file. For example:

_varl = “global variable 1”
N.B. global variables cannot be used in function headers: Thus:
function dostuff(_var)

wouldn’t make sense, sincear is a global variable, and would be invalid if it were dinky
argument.

Compound scripting variables

The scripting language supports compound variables, which can be used to construct arrays in
scripts. A compound variable has a variable name with segments separated by periods. For
example:

varname.i.

In this case, when thariable contents are accessddand] will be looked up to see if they are also
variables (non-compound). If they are, ttaandj will be replaced by the string valuesi@nd;].

103

For example:
i=10
j=3
varname..j = 343
In the above exampl e, the assignment is equivalent to:
varname.10.3 = 343

Note that the string values of i and j may be anything, but the variable name specification in the
script must follow the rules for variable names: letters or numbers, with aleading letter. The
variable name after substitution may be any string:

i = aHdxx’

varname.i = 343
The aboveisvalid. However, we cannot refer to this variable name directly:

varname.a#$xx = 343
would be invalid.
Variable names may not be longer than 16 characters, either before or after substitution.

Note that the GrADS scripting language is not particularly efficient in handling large numbers of
variables. Thus compound variables should not be used to create large arrays:

i=1
while (i<10000)
var. =i
endwhile
The above loop will create 10000 distinct variable names. Having that number of variablesin

the variable chain will slow the script down alot. If thisturns out to be a poor design choice, let me
know and | will consider making the variable handling more efficient.

Operators
The following operators are implemented:
| logical OR
& logica AND
! unary NOT
- unary minus
= equality
I= not equal
> greater than
>= greater than or equal
< lessthan

<= lessthan or equal
% concatenation

+ addition

- subtraction

* multiplication
[division

104

The following operators will perform a numeric operation if the operands are numeric:
= 1=,>>= < <=+, - */
If any of the following operations are attempted with non-numeric operands, an error will result:
+,-, %,/
Arithmetic operations are done in floating point. If the result isintegral, the result string will be an
integer.

A logical operator will give acharacter O (zero) if theresult is FALSE, and a character 1 (one) if the
result is TRUE.

Expressions
Script expressions consist of operands, operators, and parentheses.
The precedence of operatorsis:

-, (Unary)

[, *

+, -

%

= 1=,> >= <, <=
&

Within the same precedence level, operations are performed left to right. Parentheses modify the
order of operation according to standard convention.

Operands may be variables (discussed earlier), string constants, or function calls. String constants
are enclosed in either single or double quotes. Numeric constants may be entered without quotes, but
are till considered string constants.

An example of a string constant:
"Thisisastring’

The entire expression, including all function calls, etc. will be performed to obtain aresult. For
example:

varl!="" & varl*var2<10

In this expression, both sides of the logical AND operation will be resolved, and the subexpression to
the right might result in an error. In these cases, a double nested if will be required.

In some cases, the concatenation operator isimplied. Thistakes place whenever two operands abut
(with or without intervening blanks—the blanks are ignored).

For example, the following expressions have the same effect:

var1%var 2%’ String’ uses the concatenation oper&tor
varlvar2' String implied concatenation
giving:

‘varlvar2String’
Keep in mind the order of precedence for the concatenation operator.

105

Function calls take the form of:
name(arg,arg,arg,...)
where the name follows the same rules as for variable names, and the args may be expressions.

Flow control
|F Blocks
Flow of control may be controlled viathe if/elsefendif construct. Theformat is:
if expression Must be on separate record
script record
script record
else Optional
script record
endif Required!
Note that the following script record isinvalid:
if (i=10) j=20
Y ou would instead need to enter three script records:
if (i=10)
j=20
endif

Y ou could enter these three script records on the same line:
if (i=10); j=20; endif;
The portion of theif block executed depends on the result of the expression. |If the expression

resolves to a string containing the character O, the’else’ portion is executed. If theresult stringis
anything else, the’if’ portion is executed.

N.B. Thereisno EL SE | F construct in GrADS.

WHILE Blocks
The while construct is as follows:

whileexpression On separate script record
script record
script record

endwhile Required!
While the expression is true—ie, is not exactly equal to a character O -- the loop is executed.

106

Two additional script commands can be used to modify the loop execution. break will end execution
of the loop immediately. continue will branch immediately back to the top of the loop, and the
expression will be re-evaluated.
For example:
t=1
while (t<10)
‘sett't
"display
if (rc!'=0); break; endif;
t=t+1
endwhile

Functions

Functions may either be contained within the script file itself, or the may beintrinsic functions.
Functions contained within other script files are not supported as yet (other script files may be
executed viathe GrADS run command).

In either case, functions are invoked as a script expression is being evaluated. Script functions
aways have a single string result, but may have one or more string arguments. Functions are invoked
by:

name(arg,arg,arg...)
If the function has no arguments, you must still provide the parentheses:

name()

Y ou may provide your own functions from within your script file by using the function definition
record:

function name(variable, variable, ...)
To return from afunction, use the return command:
return expression

The expression isoptional; if not provided, aNULL string will bereturned. (A null stringis: ') The
result of the function is the result of the expression specified on the return command.

When afunction isinvoked, the arguments are evaluated, then flow of control istransferred to the
function. The variables contained in the list within the function definition record areinitialized to
the values of the passed arguments. If too few arguments where passed for the variables specified,
the trailing variables are uninitialized. 1f too many arguments are passed, the extra arguments are
discarded.

Y ou may modify the variables from the function definition record without modifying the variables
from the calling routine.

Scope of variablesis normally local to the function, but can be global.

When ascript fileisfirst invoked (viathe run command), execution starts at the beginning of the
file. A function definition record may optionally be provided at the beginning. If itis, it should
specify one variable name. Thisvariable will beinitialized to any 'run’ command options. If no
options were given, the variable will beinitialized to NULL.

107

Assignment
The format of the assignment record is:
variable = expression

The expression is evaluated, and the result is assigned to be the value of the indicated variable.

Standard input/output

To write information or questions to the terminal (standard output), use the 'say’ or ‘prompt’
commands:

say expression
prompt expression

The result of the expressionis written to the terminal. The prompt command works the same way
as the say command but does not append a carriage return.

To read information from the terminal (standard input), use the pull command:
pull variable

The script pauses for user keyboard input (up to the carriage return), and the string entered by the
user isassigned to the indicated variable name.

For example:

line = “Peter Pan, the flying one”
say line

To combine variables and comments when writing to standard output:
say ‘She said it is ‘ line
gives:

She said it is Peter Pan, the flying one

Sending Commandsto GrADS
The statement record consists only of an expression:
expression
The expression is evaluated, and the resulting string is submitted to GrADS as a command.

After thisrecord is executed, the script variable 'result’ is given the value of the result of the GrADS
command (the result in this case is the string that GrADS would have typed to theterminal had you
entered the command interactively). The script variable’'rc’ is given the return code from the GrADS
command (thiswill always be an integer value).

The result may contain several GrADS output lines. These will be concatenated into one long string,
and can be separated in the script using the 'sublin® function.

A GrADS eror resulting from an invalid command WILL NOT terminate execution of the script.

108

Y ou may issue any GrADS commands from the scripting environment, including the run command.

The result string from issuing the run command will be the string passed back from that ' lower level’

script via the 'return' command in that script—when that script returns to GrADS (and thus returns to
the higher level script). You may recursively call any script, but you are responsible for ensuring that
you can get back out of the recursion.

Intrinsic Functions

String functions
subwrd (string, word) - get a single word from a string

The result is the nttword’ from thestring. If the string is too short, the result is NULord’
must be an integer.

sublin (string, line) - get a single line from a string containing several lines

The result is the ntHine’ from thestring. If the string has too few lines, the NULL string is
returned.’lin€ must be an integer.

substr (string, start, length) - get part of a string

The sub-string oftring starting at locatiohstart’ for length’length’ will be returned. If the
string is too short, the result will be short or NULIstart’ and’length’ must be integer string
values.

I nput/output functions
read (filename) - read records from a file

The next record from fil&filename’ is read. Repeated calls may be made to read consecutive
records. The result is two lines within one string. The first line is the return cod&! lihe &

the record read. The record may be a maximum of 80 characters. Usdblkimé function to
separate the result. Return codes are:

0-ok

1-openerror
2-end of file

8 - file open for write
9-1/Oerror

Files are opened when the first call to read is made for a particular file name. Files are closed
when the execution of the script file terminates (note that files remain open between function
calls, etc).

write (filename, record <, append>) - write records to an output file

The record is written to fil&filename'. On the first call to write for a particular file, the file is
opened in write mode. This will destroy an existing file! If you use the optional append flag, the
file will be opened in append mode, and all writes will be appended to the end of the file. Return
codes are:

0-ok
1-openerror
8 - file open for read

109

close (name)

Closes the named file. This must be done if you wish to read from afile you have been writing
to. Thiscan also be used to rewind afile. Return codes:

0-ok
1-filenot open
Commands that complement the scripting language
There are some GrADS commands that, although not designed exclusively for scripts, are most useful
when used to complement the scripting language. These include:
query <option>

Issue the query command with no options to see some available options. The followingisa
complete list of query options:

transform - does coordinate transformations, for example
query transform valuel value2

where transform is one of:

Xy2w XY coords to world coords
Xy2gr XY coordsto grid coords
W2Xy world coordsto XY coords
w2gr world coords to grid coords
gr2w grid coords to world coords
gr 2xy grid coordsto XY coords
112xy lat/long coordsto XY coords

pp2xy page coordsto XY coords

These queriesare valid ONLY AFTER something has been displayed. The transformations
apply ONLY to the most recent item that has been displayed.

XY coords are inches on the page (ie, screen) where the page is 11x8.5 inches or 8.5x11
inches, depending on how GrADS was started.

World coords arelat, lon, lev, time or val, depending on what the dimension environment
iswhen the grid was displayed. Note that timeis displayed (and must be specified) in
GrADS absolute date/time format. val is the value coordinate for a 1-D plot (linegraph).

Grid coor dinates are the coordinates with respect to the grid being displayed. For station
data sets, grid and world coordinates are equivalent except for the time dimension. Note
that if you display agrid from a’wrapped’ data set, the grid numbers may be out of range of
the actual file grid numbers. (A 'wrapped’ data set is a data set that coversthe earth in the
longitude direction. Wrapping takes place automatically). The conversions are done
consistently, but you may want to be sure you can handle the wrapping case if your data set
isglobal.

Example:

Y ou have displayed a Hovmoller diagram:
query xy2w 5.04.5

The response might be:

110

Lon =-95 Time = 00z5nov1992
define - lists currently defined variables
defval - givethevaue of adefined variable at a point.

For example, query defval p 1 1 would give the value of the defined variable p at the point
1,1. Tointeractively modify grid point values on adefined grid, q defval can beused in
conjunction with set defval, for example:

define p=pr
g defval p 11

would return to the terminal (and the script variable result):
defval is 100

when 100 is the value of the define grid p at point 1,1.

To change the value of the define grid p at point 1,1:
set defval p 1165

changes the value of the define variable p at point 1,1 to 65.

dims - givesthe current dimension environment
filen - givesinfoon file number n
files - lists open files

fwrite - givesthe name of the file used for fwrite operations
gxinfo - list graphics settings
query gxinfo is handy when trying to find the plot area, for example:
ga-> g gxinfo
might give:
Last Graphic=Line
Page Size=11by 85
X Limits=2t010.5
Y Limits=0.75t07.75
Xaxis=Lon Yaxis=Val
Mproj =2
where;
Last Graphic=Line you output aline plot
Page Size=11by 85 you’re in landscape mode (the default)
X Limits=2t010.5 The plot is bounded on the page between x=2 and 10.5
inches
Y Limits=0.75t0 7.75 The plot is bounded between y=0.75 and 7.75 inches

Xaxis=Lon Yaxis=Val What kind of axesyou have
Mproj = number Mproj isthe map projection the data are displayed under.

where: number is

1 -scaled (no preservation of aspect ratio)

111

2 -latlon (2-D horiz fields, lon/lat)
3 -nps(northern polar stereo)

4 -gps (southern polar stereo)

5 -Robinson

NOTE: the Robinson projection only works when:

"set [on -180 180°
"set lat -90 90’

pos - waits for mouse click and returns position of mouse cursor.

shades - givescolorsand levels of shaded contours

string Xxxx - returns width of string Xxxx.
time - givestimerange of current open file
udft - lists the user-defined function table

set gxout findstn

This graphics output type expects three arguments viaadisplay command. Thefirst argument is
astation dataargument. The 2™ and 3" arguments are the X and Y position on the screen of the
desired search coordinates. GrADS will search for the nearest station to the specified X and Y
position, and print the stid, lon, and lat of the station found. This should only be used when X
and Y are the varying dimensions and AFTER aregular display command (that resultsin graphics
output) is entered.

This command is primarily intended for use with a script. Note that this command is provided as
an interim facility for doing this operation; a more complete facility will be provided for doing a
variety of filtering and search operations. Thus, you should isolate the use of the command in
your scriptsin case it is necessary to change it later.

set dbuff on|off

Sets double buffer mode on or off. This allows animation to be controlled from a script. The
clear command also sets double buffer mode off.

swap
Swaps buffers, when double buffer modeison. If double buffer mode is off, this command has
no effect.
The usual usage of these commands would be:

set dbuff on

loop

display something
swap

endloop

set dbuff off

Widgets

GrADS contains two types of graphical interface (GUI) widgets which may be used to implement a
“point and click” interface using the scripting language.

112

On screen buttons
Hereis abutton script illustrating how to draw a button widget on the screen

*

* dbutton ------------------

*

set rgb 90 100 100 100

set rgb 91 505050

set rgb 92 200 200 200

function dbutton(bnum,xc,yc,dx,dy,string,oncol,offcol ,facecol)
set button "oncol’ facecol’ 91 92 *offcol’ ' _bgcol’ 91 92 6

draw button "bnum’ 'xc’ 'yc’' 'dx’ 'dy’ 'string

return

where:
for set button....

oncol color of thetext when in the "on" state (1)
facecol color of the button facein the "on" state
offcol color of the text when in the "off" state (0)
9192 color of the button outline for 3-D look
_bgcol button face color in the "off" state

6 thickness of the shadow outline

for draw button...
bnum button number (1-512)

XC X center of the button in page coordinates (inches)
yc y center of the button in page coordinates (inches)
dx length (x) of the button in inches
dy height (y) of the button in inches

string string to display in the button center at (xc,yc)
Y ou can also redraw a button:
redraw button ### 0|1 where:
is the button number from draw button ## ..., and 0 or 1 isthe "state"

Rubber banding

GrADS has awidget type called "rband" for rubber banding. There are two modes: 1) box; and 2)
line

In box mode, when the user clicks and drags a box is opened and in line mode you get aline.

To set up therband,

set rband nn mode x1y1 x2 y2 where:

nn - widget #

mode =box or line

x1 - lowest point in x page units where the widget will be active
y1 - lowest point in y page units where the widget will be active

x2 - highest point in x page units where the widget will be active

113

y2 - highest point in y page units where the widget will be active

For example, suppose you did g gxinfo and you want to set up a box rubber band widget in the plot
region only,

Last Graphic=Line
Page Size=11by 85

X Limits=2t010.5

Y Limits=0.75t0 7.75
Xaxis=Lon Yaxis=Val
Mproj =2

Y ou would first,
set rband 21 box 2 0.75 105 7.75
and then to activate the widget,
ga->q pos

which freezes the system until the user clicks on the screen. After clicking and dragging you would
get thiskind of response from GrADS:

Position = 2.13125 7.565 1 2 7.08125 2.19583 where:

2.13 - x of thefirst corner of the box (x1)
7.56 -y of thefirst corner of the box (y1)
1 - which button was pressed:

1-left

2-middle

3-right
2 - widget type (rband):

1 - button

2 - rband
7.08 - x of the second corner of the box (x2)
7.56 - y of the second corner of the box (y2)

The page coor can be then be parsed and used in
1 q Xy2\N1

to recover the lat/lon points...

Examples

A few simple example scripts are provided with the GrADS distribution. If you do not know where
these files are, please email Brian Doty (doty@cola.iges.org) and | will send them to you. | can also
send you other (longer) examples which require data sets that you won't have, but which can provide
more complex examples.

cbar.gs Draw color bars after a shaded contour plot is displayed
xyplot.gs Doesgenera XY plot.

string.gs Plots string at point-click location.

draw.gs Draw line via point-click.

114

24.0 Using Map Projections in GrADS

It isimportant to understand the distinction between the two uses of map projections when creating
GrADS displays of your data:

» projection of the data (preprojected grids);
* projection of the display.

GrADS supports two types of data grids:

« lon/lat grids (and not necessarily regular, e.g., gaussian);
* preprojected grids.

Using Preprojected Grids

Preprojected data are data alr eady on a map projection. GrADS supports four types of
preprojected data:

N polar stereo (NMC model projection);

S polar stereo (NMC model projection) ;

Lambert Conformal (originally for Navy NORAPS model);

NMC eta model (unstaggered).

More precise N and S polar stereo (hi res SSM/I data)

Colorado State University RAMS model (oblique polar stereo; beta)

ook wnE

When preprojected grids are opened in GrADS, bilinear interpolation constants are calculated and
al date are displayed on an internal GrADS lat/lon grid defined by the xdef and ydef card in the data
description or ".ctl" file (that’swhy it takes longer to "open" a preprojected grid data set).

It is very important to point out that the internal GrADS grid can be any grid asit is completely
independent of the preprojected datagrid. Thus, there is nothing stopping you displaying
preprojected dataon avery high reslon/lat grid (again, defined in the .ctl by xdef and ydef). In
fact, you could create and open multiple .ctl files with different resolutions and/or regions which
pointed to the same preprojected datafile.

When you do a"display"” (i.e., get agrid of data), the preprojected data are bilinearly interpolated to
the GrADS internal lat/lon grid. For preprojected scalar fields (e.g., 500 mb heights), the display is
adeqguate and the precision of the interpolation can be controlled by xdef and ydef to define a higher
spatial resolution grid.

The big virtue of this approach isthat al built in GrADS analytic functions (e.g., aave, hcurl...)
continue to work even though the data were not originally on alon/lat grid. The downsideisthat you
are not looking directly at your data on a geographic map. However, one could always define a .ctl
file which simply opened the datafile asi,j data and displayed without the map (set mpdraw off).
So, in my opinion, this compromise is not that limiting even if as amodeller you wanted to look at
the grid—you just don't get the map background.

Preprojected vector fields are a little trickier, depending on whether the vector is defined relative to
thedata grid or relative to th&arth. For example, NMC polar stereo grids use winds relative to the
data grid and thus must btated to the internal GrAD%at/lon grid (again defined in thetl file

by thexdef andydef cards).

115

The only potential problem with working with preprojected data (e.g., Lambert Conformal model
data) is defining the projection for GrADS. Thisis accomplished using a pdef card in the data
descriptor ".ctl" file.

Polar Stereo Preprojected Data (coar se accuracy for NMC Models)

Preprojected data on a polar stereo projection (N and S) isdefined asat NMC. For the NMC NGM
model GRIB data distributed via anon ftp from nic.fb4.noaa.gov, the pdef card is:

pdef isize jsize projtypeipolejpolelonref gridinc
pdef 53 45 nps 27 49 -105 190.5

(NOTE: the* in the first column of the .ctl file means a comment...)
where,
ipole and jpole are the (i,j) of the pole and gridinc isthe dx in km.

Therelevant GrADS sourceis:

void w3fb04 (float alat, float along, float xmeshl, float orient,
float *xi, float *xj) {
/*

SUBPROGRAM WBFB04 LATI TUDE, LONG TUDE TO GRI D COCRDI NATES
AUTHOR: MCDONELL, J. ORG WB45 DATE: 90-06-04

ABSTRACT: CONVERTS THE COORDI NATES OF A LOCATI ON ON EARTH FROM THE
NATURAL COORDI NATE SYSTEM OF LATI TUDE/ LONG TUDE TO THE GRID (1, J)
COORDI NATE SYSTEM OVERLAI D ON A POLAR STEREOGRAPHI C MAP PRO-

JECTI ON TRUE AT 60 DEGREES N OR S LATI TUDE. WBFB04 | S THE REVERSE
OF WBFBO5.

PROGRAM HI STORY LOG
77-05-01 J. MCDONELL
89-01-10 R E.JONES CONVERT TO M CROSOFT FORTRAN 4.1
90-06-04 R E.JONES CONVERT TO SUN FORTRAN 1.3
93-01-26 B. Doty converted to C

USACGE: CALL WBFB04 (ALAT, ALONG XMESHL, ORI ENT, X, XJ)

| NPUT VARI ABLES:

NAMES | NTERFACE DESCRI PTI ON OF VARI ABLES AND TYPES

ALAT ARG LI ST LATITUDE I N DEGREES (<0 | F SH)

ALONG ARG LI ST WEST LONG TUDE | N DEGREES

XMESHL ARG LI ST MESH LENGTH OF GRID I N KM AT 60 DEG LAT(<0 | F SH)
(190.5 LFM GRID, 381.0 NH PE GRID,-381.0 SH PE GRI D)

ORI ENT ARG LI ST ORI ENTATI ON VEST LONG TUDE OF THE GRI D
(105.0 LFM GRID, 80.0 NH PE GRID, 260.0 SH PE GRI D)

QUTPUT VARI ABLES:
NAMES | NTERFACE DESCRI PTI ON OF VARI ABLES AND TYPES
Xl ARG LI ST | OF THE PO NT RELATIVE TO NORTH OR SOUTH POLE
XJ ARG LI ST J OF THE PO NT RELATIVE TO NORTH OR SOUTH POLE

SUBPROGRAMS CALLED:
NAMES LI BRARY

0000000000000 000000000000000000000000

116

C CGS SIN SYSLI B
C

C REMARKS: ALL PARAMETERS I N THE CALLI NG STATEMENT MJST BE

C REAL. THE RANGE OF ALLOWABLE LATI TUDES | S FROM A POLE TO

C 30 DEGREES | NTO THE OPPCSI TE HEM SPHERE.

C THE GRID USED IN THI S SUBROUTINE HAS I TS ORIA N (I =0, J=0)

C AT THE POLE I N EI THER HEM SPHERE, SO IF THE USER' S GRID HAS | TS
C ORI G N AT A PO NT OTHER THAN THE POLE, A TRANSLATI ON | S NEEDED
C TO GET | AND J. THE GRI DLI NES OF | =CONSTANT ARE PARALLEL TO A
C LONG TUDE DESI GNATED BY THE USER. THE EARTH S RADI US | S TAKEN
C TO BE 6371. 2 KM

C

C ATTRI BUTES:

C LANGUAGE: SUN FORTRAN 1.4

C MACHI NE: SUN SPARCSTATI ON 1+

(o)

static float radpd = 0.01745329;
static float earthr = 6371. 2;

float re,xlat,wong,r;
re = (earthr * 1.86603) / xmeshl;
xlat = alat * radpd,
i f (xmeshl>0.0) {
wlong = (along + 180.0 - orient) * radpd;
r = (re * cos(xlat)) / (1.0 + sin(xlat));

*Xi =r * sin(wong);
*Xj =r * cos(w ong);
} else {
re = -re;
xlat = -xlat;
wong = (along - orient) * radpd;

= (re * cos(xlat)) / (1.0+ sin(xlat));
* Xi = r * sin(wong);
= -r * cos(wong);
}
}

Lambert Conformal Preprojected Data

The Lambert Conformal projection (lcc) was implemented for the U.S. Navy’s limited area model
NORAPS. Thus, to work with your lcc datayou must express your grid in the context of the Navy
Icc grid. NMC has been able to do thisfor their AIWIPS grids and the Navy definition should be

genera enough for others.

A typical NORAPS Lambert-Conformal grid is described below, including the C code which sets up

the internal interpolation.

117

The .ctl fileis:

dset “"temp.grd
title NORAPS DATA TEST
undef 1€20
pdef 103 69 lcc 30 -88 51.5 34.5 20 40 -88 90000 90000
xdef 180 linear -180 1.0
ydef 100 linear -101.0
zdef 16 levels 1000 925 850 700 500 400 300 250 200 150 100 70 50 30 20 10
tdef 1linear 00z1jan94 12hr
varsl
t 16 0 temp
endvars

where,

103 =#ptsin x

69 =#ptsiny

Icc = Lambert-Conformal
30 =lat of aref point

88 =lon of ref point (E ispositivein GrADS, W is hegative)
51.5 = of ref point

34.5 = of ref point

20 =Struelat

40 =N truelat

88 =standard lon

90000 = dx in M

90000 =dy in M

Otherwisg, it is the same as other GrADSfiles.
Note - the xdef/ydef apply to the lon/lat grid GrADS internally interpolates to and can be anything...

The GrADS source which maps lon/lat of the GrADS internal lon/lat grid to i,j of the preprojected
gridis:

/* Lanbert Confornal conversion */

void Il2lc (float *vals, float grdlat, float grdlon

float *grdi, float *grdj) {

/* Subroutine to convert fromlat-lon to Lanbert Conformal i,j.

Provi ded by NRL Monterey; converted to C 6/15/94.
SUBROUTINE: |l2lc

(9]

PURPCSE: To conpute i- and j-coordi nates of a specified
grid given the latitude and | ongitude points.
Al latitudes in this routine start
with -90.0 at the south pole and increase
northward to +90.0 at the north pole. The
| ongitudes start with 0.0 at the Greenw ch
neridian and increase to the east, so that
90.0 refers to 90.0E, 180.0 is the inter-
nati onal dateline and 270.0 is 90. OW

| NPUT VARI ABLES:

val s+0 reflat: latitude at reference point (iref,jref)

OO0OO0OO0O0O0OO0OOOOOO0O0OO0

118

val s+1 reflon: longitude at reference point (iref,jref)
val s+2 iref: i -coordi nate val ue of reference point
val s+3 jref: j -coordi nate val ue of reference point

val s+4 stdltl: standard |atitude of grid

val s+5 stdlt2: second standard latitude of grid (only required
if igrid =2, lanbert confornal)

val s+6 stdlon: standard |ongitude of grid (longitude that

points to the north)

val s+7 del x: grid spacing of grid in x-direction
for igrid =1,2,3 or 4, delx nust be in neters
for igrid =5, delx nust be in degrees

val s+8 del y: grid spacing (in neters) of grid in y-direction
for igrid =1,2,3 or 4, delx nust be in nmeters
for igrid =5, dely nust be in degrees

grdlat: latitude of point (grdi,grdj)
grdlon: longitude of point (grdi,grdj)

grdi: i-coordinate(s) that this routine will generate
i nformation for

grdj: j-coordinate(s) that this routine will generate
i nformation for

FOOOO0OO0OO0OO0O0O00000000000000000000000O0

float pi, pi2, pi4, d2r, r2d, radius, onega4,

fl oat gcon, ogcon, ahem deg, cnl, cn2,cn3,cn4, rih, xih,yih,rrih, check
float alnfix,alon,x,y;

pi = 4.0*atan(1.0);

pi2 = pi/2.0;
pi4 = pil4.0;
d2r = pi/180. 0;
r2d = 180. 0/ pi ;
radi us = 6371229. 0;
onega4 = 4. 0*pi/86400. 0;
Al 1 1 T nf */
/[*case where standard |lats are the sane */
if(*(val s+4) == *(val s+5)) {
gcon = sin(*(val s+4)*d2r);
} else {

gcon = (log(sin((90.0-*(val s+4))*d2r))
I og(sin((90.0-*(val s+5))*d2r)))
/(log(tan((90.0-*(val s+4))*0.5*d2r))

I og(tan((90.0-*(val s+5))*0.5*d2r)));

[*nf - e mf */
ogcon = 1.0/ gcon
ahem = fabs(*(val s+4))/(*(val s+4));

deg = (90.0-fabs(*(val s+4)))*d2r;
cnl = sin(deg);
cn2 = radi us*cnl*ogcon

119

deg = deg*0. 5;

cn3 = tan(deg);

deg = (90.0-fabs(*val s))*0.5*d2r

cn4 = tan(deg);

rih = cn2*pow((cn4/cn3), gcon);

deg = (*(val s+1)-*(val s+6))*d2r*gcon
xi h = rih*sin(deg);

yih = -rih*cos(deg) *ahem

deg = (90.0-grdl at *ahem *0. 5*d2r

cn4 = tan(deg);

rrih = cn2*pow((cn4/cn3), gcon);

check = 180. 0-*(val s+6);

al nfix = *(val s+6) +check;

al on = grdl on+check;

whil e (al on<0.0) alon = al on+360. 0;
whil e (al on>360.0) al on = al on-360. 0;
deg = (al on-al nfix)*gcon*d2r

X = rrih*sin(deg);

y = -rrih*cos(deg)*ahem
*grdi = *(val s+2) +(x-xi h
*grdj = *(val s+3)+(y-yih

val s+7));
val s+8));

)/ (>
) (*

—~

NMC Eta model (unstaggered grids)

The NMC eta model “native” grid is awkward to work with because the variables are on staggered
(e.g., the grid for winds is not the same as the grid for mass pamnatspn rectangular (number of
points in i isnot constant with j) grids. Because any contouring of irregularly gridded data involves
interpolation at some point, NMC creates “unstaggered” eta model fields for practical application
programs such as GrADS. In the unstaggered grids all variables are placed on a anchmon
rectangular grid (the mass points).

Wind rotation has also been added so that vector data will be properly displayed.
The pdef card for a typical eta model grid is:
pdef 181 136 eta.u -97.0 41.0 0.38888888 0.37037037

181 = #pts in x

136 =#ptsiny

eta.u = eta grid, unstaggered

-97.0 = lon of ref point (E is positive in GrADS, W is negative) [deg]
41.0 = lat of ref point [deg]

0.3888 = dlon [deg]

0.37037 = dlat [deqg]

The source code in GrADS for the lon,lat -> i,j mapping is:

void Il2eg (int im int jm float *vals, float grdlon, float grdlat,
float *grdi, float *grdj, float *al pha) {

/* Subroutine to convert fromlat-lon to NMC eta i,j.
Provided by Eric Rogers NMC, converted to C 3/29/95 by M ke Fiorino.
SUBRQUTI NE: |1 2eg

PURPCSE: To conpute i- and j-coordinates of a specified
grid given the latitude and | ongitude points.

OO0

120

[sNsNsNesNoNoNoNoNoNoNoNoNoNesNoNoNoNoNoNoNoNoNoNoNoNeoNeoNeNe)

*
~

val s+0
val s+1
val s+2

val s+3

All latitudes in this routine start

with -90.0 at the south pole and increase

northward to +90.0 at the north pole. The
| ongi tudes start with 0.0 at the Greenw ch
neridian and increase to the east, so that
90.0 refers to 90.0E, 180.0 is the inter-

national dateline and 270.0 is 90. 0W

| NPUT VARI ABLES:

t1 n0d: |ongitude of the reference

center point

tphOd: latitude of the reference center point

dlam dlon grid increment in deg

dphi: dlat grid increment in deg

grdlat: latitude of point (grdi,grdj)

grdlon: |ongitude of point (grdi,grdj)

grdi: i -coordinate(s) that this
i nformation for

grdj: j-coordinate(s) that this
informati on for

oat pi,d2r,r2d, earthr;

phi, lam | ane, | anD, phi 0, | anDe, cosphi, si nphi, si nphi 0, cosphi 0, si nl anr, cos

fl
float tlnDd,tphOd, dl am dphi
fl

routine will generate

routine will generate

fl oat x1, x, vy, z, bi gphi, bi glam cc, numden, tIl mtph

int idimjdim

pi =3. 141592654,

d2r =pi / 180. 0;
r2d=1. 0/ d2r;
eart hr=6371. 2;

tl n0d=-*(val s+0); /* convert + Wto + E, the
| ongi tude */

t phOod=*(val s+1) ;

dl ame(*(val s+2))*0. 5

dphi =(*(val s+3)) *0. 5;

/* grid point and center of eta grid trig */

/* convert to radians */

phi
| am

grdl at *d2r;
-grdlon*d2r; /* convert + Wto + E,

| ongi tude */

| amre

phi O
| amD
| amDe

(grdlon)*d2r;
t phOd*d2r;

t | n0d*d2r ;
(360.0 + *(val s+0))*d2r;

121

grads standard for

the grads standard for

/* cos and sin */

cosphi = cos(phi);

si nphi = sin(phi);

si nphi 0 = si n(phi0);
cosphi 0 = cos(phi 0);

si nl anr =si n(| anme- | anDe) ;
cosl anr =cos(| ane- | anDe) ;

1 cosphi *cos(1 am | an0) ;
cosphi 0*x1+si nphi 0*si nphi
-cosphi *si n(l am | anD) ;

- si nphi 0*x1+cosphi 0*si nphi

N< X X

/* parans for wind rotation al pha */
cc=cosphi *cosl anr;
num=cosphi *si nl anr
den=cosphi 0* cc+si nphi 0*si nphi

t | mrat an2(num den) ;

/* parns for lat/lon ->i,] */

atan(z/ (sqrt(x*x+y*y)))*r2d;

bi gl am = atan(y/ x) *r2d

idim=inr2-1

jdim=jnm2-1;

*grdi = (biglanm dlam +(idi m1)*0.5;

*grdj = (bigphi/dphi)+(jdiml)*0.5;

*grdi = (*grdi +1)*0.5-1

*grdj = (*grdj+1)*0.5-1

*al pha = asin((sinphiO*sin(tlm) / cosphi)
/*

printf("qgqq %6.2f %6.2f 9%.2f %.2f % %y % %\ n",
grdlon, grdl at, *grdi, *grdj, *al pha, t| ntr2d, cosphi, si nphi 0);
*/
}

NM C high accuracy polar stereo for SSM/I data

The polar stereo projection used by the original NMC modelsis not very precise because it assumes
the earth isround (eccentricity = 0). While this approximation was reasonable for coarse resolution
NWP models, it isinadequate to work with higher resolution data such as SSM/I.

Wind rotation has not been implemented!!! Use only for scalar fields.
pdef ni nj pse dlat slon polei polg) dx dy sgn

ni = # pointsin x

nj = #pointsiny

slat = absolute value of the standard latitude
don = absolute value of the standard longitude
pse = polar stereo, “eccentric”

122

polei = X index position of the pole (where (0,0) isthe index of thefirst point vice the more
typical (1,1))

polg =y index position of the pole (where (0,0) isthe index of the first point vice the more
typical (1,1))

dx =ddtaxinkm

dy = deltay inkm

sgn = 1for N polar stereo and -1 for S polar stereo

Source code in GrADS for the lon,lat -> i,j mapping:

void Il 2pse (int im int jm float *vals, float lon, float I|at,
float *grdi, float *grdj) {

/* Convert from geodetic latitude and | ongitude to polar stereographlc
grid coordinates. Follows mapll by V. J. Troisi. */

/* Conventions include that slat and | at nust be absolute val ues */

/* The hemni spheres are controlled by the sgn paraneter */

/* Bob Grunmbine 15 April 1994. */

const rearth = 6738. 273e3;
const eccen2 0. 006693883;
const float pi = 3.141592654;

float cdr, alat, along, e, e2;
float t, x, y, rho, sl, tc, nt;
float slat,slon,xorig,yorig,sgn,polei, pol ej, dx, dy;

sl at =*(val s+0);

sl on=*(val s+1);
pol ei =*(val s+2);
pol ej =*(val s+3) ;
dx=*(val s+4) *1000;
dy=*(val s+5) *1000;
sgn=*(val s+6) ;

Xorig
yorig

= -pol ei *dx;

= -pol ej *dy;

I*printf("ppp Y9 Y9 %9 %9 % %

%9\ n", sl at, sl on, pol ei, pol e}, dx, dy, sgn) ; */

cdr = 180./pi;
alat = lat/cdr;
along = lon/cdr;

e2 = eccenz;
e sqrt(eccen2);

if (fabs(lat) > 90.) {

*grdi = -1;
*grdj = -1;
return;

el se {

t =tan(pi/4. - alat/2.) [/
pow((1.-e*sin(alat))/(1.+e*sin(alat)) , e/l2.);

if (fabs(90. - slat) < 1.E3) {

rho = 2. *rearth*t/
pow(pow(1l.+e,1.+e) * powm(1l.-e,1.-e) , el2.);

123

el se {
sl sl at/cdr;
tc tan(pi/4.-sl/2.) [
pow((1.-e*sin(sl))/ (1. +e*sin(sl)), (el2.));
nc = cos(sl)/ sqrt(l.-e2*sin(sl)*sin(sl));
rho = rearth * nt*t/tc

}

X
y

rho*sgn*cos(sgn*(al ong+sl on/ cdr));
rho*sgn*si n(sgn*(al ong+sl on/ cdr));

*gr di
“grdj

(x - xorig)/dx+1
(y - yorig)/dy+1

[*printf("ppp (%9 %) (%@ %9 %) %
%g\n",lat,lon,x,y, rho, *grdi,*grdj);*/

return;

}
}

CSU RAMS Oblique Polar Stereo Grids
The CSU RAMS model uses an oblique polar stereo projection. This projection is till being tested...
pdef 26 16 ops 40.0 -100.0 90000.0 90000.0 14.0 9.0 180000.0 180000.0

26 = #iptsin x

16 = #ptsiny

ops = oblique polar stereo

40.0 = lat of ref point (14.0, 9.0)

-100.0 =lon of ref point (14.0, 9.0 (E is positivein GrADS, W is negative)

90000.0 = xref offset [m]
90000.0 = yref offset [m]
14.0 =i of ref point
9.0 =j of ref point
180000.0 =dx[m]
180000.0 =dy[m]

Wind rotation has not been implemented!!! Use only for scalar fields.

Source code in GrADS for the lon,lat -> i,j mapping:
void || 2ops(float *vals, float Ini, float Iti, float *grdi, float *grdj)
const float radius = 6371229.0 ;
const float pi = 3.141592654;
float stdlat, stdlon, xref, yref, xiref, yjref, delx , dely;
float plt, pln;
doubl e pi 180, c1,c2, c3, c4, c5, c6, arg2a, bb, pl t1, al pha,
pl n1, pl t 90, argul, ar gu2;

doubl e hsign, gl or,rstdlon, glolimfacpla, x,y;

124

stdlat = *(val s+0);
stdlon = *(val s+1);
xref = *(val s+2);
yref *(val s+3);
Xi ref *(val s+4);
yj ref *(val s+5);
del x *(val s+6);
dely *(val s+7);

c1=1.0 ;
pi 180 = asin(cl)/90.0;

c set flag for n/s hem sphere and convert |ongitude to <0

i nterval

if(stdlat >= 0.0) {
hsign= 1.0 ;

} else {
hsign=-1.0

}

/*
C

c set flag for n/s hem sphere and convert |ongitude to <0

i nterval
c
*/
glor=lni ;
i f(glor <= 0.0) glor=360.0+glor ;
rstdl on=stdl on
if(rstdlon < 0.0) rstdl on=360. 0+stdl on;

/*
c
c test for a n/s pole case
c
*/
i f(stdlat == 90.0) {
plt=lti ;
pl n=f nod(gl or +270. 0, 360. 0) ;
goto 12000
}
if(stdlat == -90.0) {
plt=-1ti ;
pl n=f nod(gl or +270. 0, 360. 0) ;
goto 12000
}
/*
c
c test for longitude on 'greenwich or date line
)

if(glor == rstdlon) {
if(lti > stdlat) {
pl t=90.0-1ti+stdl at;
pl n=90. 0O;

125

360>

360>

} else {
pl t =90. O-stdl at +l ti
pl n=270. 0; ;

goto 12000
}

i f(frmod(glor+180.0,360.0) == rstdlon) {
pl t=stdl at-90. 0+l ti
if(plt < -90.0) {
pl t=-180.0-plt;

pl n=270. 0;
} else {
pl n= 90. 0;
}
goto 12000 ;
}
/*
c
c determi ne | ongitude distance relative to rstdlon so it belongs to
c the absolute interval 0 - 180
c
*/

argul = glor-rstdlon;
i f(argul > 180.0) argul = argul-360.0;
i f(argul < -180.0) argul = argul+360.0;

/*
c
c 1. get the help circle bb and angle al pha (legalize argunents)
c
*/
c2=lti*pi 180

c3=argul*pi 180

arg2a = cos(c2)*cos(c3)
if(-cl > arg2a) arg2a
if(cl < arg2a) arg2a
bb = acos(arg2a) ;

-cl ; /* arg2a = maxl(arg2a,-cl) */
cl ; /* minl(arg2a, cl) */

c4=hsi gn*l ti *pi 180
arg2a = sin(c4)/sin(bb)
if(-cl > arg2a) arg2a
if(cl1 < arg2a) arg2a
al pha = asin(arg2a) ;

-cl; /* argla
cl ; /* argla

dmaxl(arg2a,-cl) */
dminl(arg2a, cl) */

c 2. get plt and pln (still legalizing argunments)

c5=stdl at *pi 180

c6=hsi gn*stdl at *pi 180
arg2a = cos(cbh)*cos(bb)
if(-cl > arg2a) arg2a
if(cl < arg2a) arg2a
pltl = asin(arg2a)

sin(c6)*sin(c4)
-cl; /* argla
cl ; /* arga

dmax1(arg2a,-cl) */
dminl(arg2a, cl) */

I +

arg2a = sin(bb)*cos(al pha)/cos(plt1l)

if(-cl > arg2a) arg2a = -cl1 ; /* arg2?a

dmax1(arg2a,-cl) */

126

if(cl <arg2a) arg2a = cl1 ; /* arg2a = dmnl(arg2a, cl) */
pl nl = asin(arg2a) ;

c test for passage of the 90 degree longitude (duallity in pln)
c get plt for which pln=90 when Iti is the latitude

arg2a = sin(c4)/sin(c6)
if(-cl > arg2a) arg2a
if(cl1 < arg2a) arg2a
plt90 = asin(arg2a) ;

-cl; /* argla
cl; /* arg2a

dmaxl(arg2a,-cl) */
dm nl(arg2a, cl) */

c get help arc bb and angl e al pha

arg2a = cos(ch)*sin(plt90) ;

if(-cl > arg2a) arg2a -cl; /* argla
if(cl < arg2a) arg2a cl; /* arg2a
bb = acos(arg2a) ;

dmaxl(arg2a,-cl) */
dm nl(arg2a, cl) */

arg2a = sin(c4)/sin(bb)

if(-cl > arg2a) arg2a = -cl ; /* arg2a = dnmaxl(arg2a,-cl) */
if(¢l <arg2a) arg2a = cl ; /* arg2a = dm nl(arg2a, cl) */
al pha = asin(arg2a) ;
/*
c
c get glolim- it is nesc. to test for the existence of solution
c
*/

argu2 = cos(c2)*cos(bb) / (1.-sin(c4)*sin(bb)*sin(al pha)) ;
if(fabs(argu2) > cl) {
glolim= 999.0;

} else {
glolim= acos(argu2)/pi 180;
}
/*
c
c nodi fy (if nesc.) the pln solution
c
*/
if((fabs(argul) > glolim&& Iti <= stdlat) || (Iti > stdlat)) {
pl n1 = pi 180*180.0 - plnl
/*
c
c the solution is symmetric so the direction nust be if’ed
c
*/
if(argul < 0.0) {
pl n1 = -plni;
/*
c
c convert the radians to degrees

127

*/
plt = pltl/pil80 ;
pln = plnl/pi 180
/*
c
c to obtain a rotated value (ie so x-axis in pol.ste. points east)
c add 270 to | ongitude
c
*/

p! n=f nod(pl n+270. 0, 360. 0) ;
| 2000:

*

this program convert polar stereographic coordinates to x,y ditto
| ongi t ude: 0 - 360 ; positive to the east

latitude : -90 - 90 ; positive for northern heni sphere

it is assuned that the x-axis point towards the east and
corresponds to longitude = 0

tsp 20/ 06- 89

constants and functions

FOO0O0O0O000000

~

facpla = radius*2.0/ (1. 0+sin(plt*pi 180))*cos(plt*pi 180);
X facpl a*cos(pl n*pi 180) ;
y facpl a*si n(pl n*pi 180) ;

*grdi =(x-xref)/del x + xiref;
*grdj =(y-yref)/dely + yjref;

return;

Pitfallswhen using preprojected data
There are afew gotchaswith using preproj ected data:

1) the unitsin the variable definition for theu and v components must be 33 and 34 (the GRIB
standard) respectively, e.g.,

u 1533 ucomponent of thewind at 15 pressure levels
v 1534 v component of thewind at 15 pressure levels

2) wind rotation is handled for polar stereo (N and S) preprojected data, but not for Lambert
Conformal, as the Navy rotates the winds relative to earth. Thiswill have to be added later......

3) the eta.u and ops projection are still experimental...
GrADS Display Projections

Now that you hopefully understand GrADS data grids, it istime to discuss display projections.
Graphicsin GrADS are calculated relative to the internal GrADS data grid i,j space, transfor med to

128

the display device coordinates (e.g., the screen) and then displayed. That is, thei,j of the graphic
element is converted to lat/lon and then to x,y on the screen viaamap pr ojection.

GrADS currently supports four display projections:

 lat/lon (or spherical);

* N polar stereo (set mproj nps);

e Spolar stereo (set mproj sps);

« the Robinson projection (set lon -180 180, set lat -90 90, set mproj robinson).

Asyou can probably appreciate, the i ,j-to-lon/lat-to-screen x,y for lon/lat displaysis very simple and
is considerably more complicated for N and S polar stereo projections.

In principle, a Lambert Conformal display projection could be implemented. It just takeswork and a
simple user interface for setting up that display projection. Actualy, the user interface (i.e., "set"
calls) isthe most difficult problem...

Summary and Plans

GrADS handles map projections in two different ways. Thefirst is preprojected data where the
fields are already on a projection (e.g., Lambert Conformal). Itisfairly straightforward to implement
other preprojected data projections and we will be fully implementing the NMC eta grid both
staggered and unstaggered, "thinned" gaussian grids and the CSU RAMS oblique polar stereo
projection. The secondisin how i,j graphics (calculated in "grid" space) are displayed on a map
background. Currently, only afew basic projections (lon/lat, polar stereo and robinson) are
supported, but perhaps the development group will tackle this problem.

129

Appendices

130

Appendix A: Supplementary Scripts

This Appendix includes documentation (where available) and names of available scriptsto
supplement GrADS utilities. Please see ftp://sprite.lInl.gov/pub/fiorino/grads/lib.

1) Correlation between two horizontal grids (corr.gs)

Author: Mike Fiorino

2) GrADS Color Table Script (cmap.gs)

Author: Mike Fiorino

Prerequisites

| assume that you know something about GrADS scripts and hopefully have written afew. In the text
below strings between the’ ' are GrADS command and strings between " " are UNIX commands or
files names.

Using Colorsin GrADs

Let’'sfirst go over using colors. GrADS includes 16 defaults colors numbered 0 15 and has the
capability of extending the number of colors using

'setrgb # R G B’ where

is the color number

R isthe Red value (0-255)

G isthe Green value of the color (0-255)
B isthe Blue value of the color (0-255)

S0, to create your own color map for colors number 21-24 you would, for example,

"set rgb 20 0 155 155
"set rgb 21 1550 155
'set rgb 2200155

"set rgb 23 155 155 155’
'setrgb 2415500

and you could then access these colors just as you would the 0-15 built-in colors. For example,

"set gxout contour’
"set ccolor 23
1d gpi

would contour the slp field using color 23
If you wanted to set the "rainbow" sequence to your new colors,

'set rbeols 21 22 23 24’
1d gpi

would contour slp with arange of colors from 21-24

131

Perhaps the most useful application of user-defined colorsisin color fill graphics. For example,

"set gxout shaded’
"set clevs 1000 1008 1016 1024°
'setccolsO 21 22 23 24

would shade areas < 1000 in slp in black (no colors), areas where slp is 1000 - 1008in 21, ..., 1016 -
1024 in 23 and all values > 1024 in 24.

For grids with index or parametric data (i.e., non-continuous), the fgrid command is very useful,

"set gxout fgrid’
"set fgvals 1000 22
1d g pi

would fill grid boxes where slp = 1000 with color 22. Y ou can extend this by,
"set fgvals 1000 22 1008 23 1016 24

to color more grid boxes,

An alternative to contour color fill isbox color fill using,

"set gxout grfill’
1d gpi

which color fills the grid boxes using the same coloring scheme as,
"set gxout shaded’

and you can control the coloring scheme in the same way. The only problem with
"set rgb’

isthat you can’'t tell what the color will 1ook like on the screen (or on hardcopy) until you test it by
running GrADS. Hereiswhere the script cmap.gs comes; it allows you to inter actively create and
madify acolor table.

Using cmap.gs

| use the .gct file postfix to distinguish GrADS color tables from other GrADSfiles (e.g., .0s=
GrADS scripts) and at the first invocation of cmap.gs, the a color table called "grads.gct” is created. |
typically rename grads.gct to another file name (e.g., nmc.gct) and then use that table in subsequent
scripts.

Let'screateacolor table. First fire up GrADS in landscape mode
"grads-I"

resize your graphics window and at the GrADS terminal window type,
‘run cmap.gs

Thefirst thing the script will say is,
"Enter the Number of Colors:

Typein anumber between 1-100, for example,
10

Y ou should then see on the graphics screen (--> explains what’ s what):

132

GrADS color tablefor : grads.gct --> name of the color tablefile
(10 boxes) --> boxeswith color to edit

12345678910 --> number of the box

1 --> color number being edited

--> sliders to control RGB

0 0 0 --> the value of RGB
EEEEEEEE |
| Save & | --> box to click to save and quit
| Quit |

To edit color #2, use your mouse and click on the box above number 2. The color number will
changeto 2 and you're ready to edit. Click just to the left of the slider to change the value. The
bottom part of the dider is 0 and the top is 255. Just play with each slider until you are happy with
the color and go on to another color. Repeat the "click to the left of the slider process' and when you
are al done, click on the save and quit button. Thiswill save your color table to the file "grads.gct”.
Hereiswhat it will look something like:

225 174 91
238 214 129
163 233 0

0 0 88

0 201 0

0 213 107
240 192 69
233 144 227
221 192 109
10 247 0 O

OCoO~NOUIAWNPE

To access these colorsin GrADS use the colortab function provided at the end of doc. Here's how
the "grads.gct” file color table is accessed in a GrADS script:

"rc=colortab(grads)’

rcisareturn code and equals the number of colorsin the color table file "grads.gct”, if the file was
there and was readable. Note that the ".gct" in the file name isimplicit. Even though the numbers are
referenced 1-10 in cmap.gs, in GrADS the colors are numbered as 21-30. The starting number of the
color table is arbitrary; | chose 21 to separate user-defined colors from the 0-15 GrADS default colors
which cannot be changed.

To use the colors try something like,

"set gxout shaded’
"set clevs 1000 1004 1008 1016’

133

'set ccolsO 21 22 23 24

Undoubtedly you will not be happy with your first color table. To edit it, just rerun cmap.gs, but use
the file name as a command line parameter to cmap.gs, e.g.,

"grads’
‘run cmap.gs. grads

The color table will be read in and you can now edit the colors and save it. However, cmap.gs will
overwrite the file, so copy it to another fileif you want to keep the original.

Problems and questions

The colors do not come out right on a PC running Xvision during editing, but not when running
GrADS. The problemisin the X server because when you have draw color 20 on the screen and
then, ’set rgb 20" to adifferent color, it changes on the screen (the difference between pseudo and
true color in X).

3) Font Display (font.gs)

Displaysafont setin GrADS. All characters for the font corresponding to the calling argument are
shown (default to font set 1). For example:

run font.gs 2 displaysfont set 2.

4) Plot a color bar (cbar.gs)

Plots a color bar key next to the map when gxout = shaded.

5) Stack commands and display on flush (stack.gs)

Useful for PC GrADS. Delays display until a sequence of commands has been entered and then
executes them sequentially on flush.

6) Draw all WX Symbols (wxsym.gs)

Displays available weather symbols.

7) (draw.gs)

Author: Mike Fiorino

8) (string.gs)

Author: Mike Fiorino

9) (loop.gs)

Author: Mike Fiorino

134

10) (bsamp.gs)

Author: Brian Doty

11) Expanded Color Bar Script (cbarn.gs)

Author: Mike Fiorino

Hereis my version of the cbar.gs script. | cal it charn.gs and is considerably more powerful that the
original. It allows you to scale and place the colorbar anywhere on the page and is visually more

appealing.

12) Computing Standard Deviation (sd.gs)

Author: Anjuli S Bamzai

Thisis an example script outlining the procedure to be used to write a script generating standard
deviations.

| recently wrote afairly long script that took atime series of weekly global gridded data and
calculated seasonal std dev., monthly data should be along the same lines... calculate climo and time
series of anomalies from the seriesfirst.

Let 'sassume you want std dev of dlp for Jan from your series. Here | use the notation slpanom for
the time series of the slp anomalies you need to generate first. sd.gs would give us the sum of the
squares of the anomalies after the do loop. nJan isthe number of Januarys that occurred in the
entire time series. sdJan for the std dev of slp for Jan..isyour final result

Thebasic trick isto set ado loop that goes over the entire series and use commands such asin sd.gs,

13) Draw an x,y Plot (xyplot.gs)

Author: Mike Fiorino

135

Appendix B: Using GRIB Data in GrADS

Gribscan

The"gribscan" routine is used for extracting grid info from GRIB data files and features:

» grid output in ASCII, floats, and/or grib;

» product/grid information;

» automatic "scanning” for GRIB records so that you don’t have to know the physical layout of
the data to scan it.

File options:

iifname =input grib file name

oofname = output file name WITHOUT an extension

og =output GRIB

oa =output ASCII (%8gin C)

of =astream of floats. Thisis machine dependent and = 64-bit on Crays & 32-hit
elsewhere

If -i isnot invoked then gribscan asks for afile name. If -0 isomitted then a default ofname of
zyOx1w2.typeis created where type =

asc - ascii
grb - GRIB
dat - astream of floats (GrADS format)

The FNMOC folks will "get" the zyOx1w2 name...

Processing Options:
hNNN

fixed file header of NNN bytes. The default isto seek the first GRIB message automatically,
but if you know NNN, it is more efficient to specify it.

SNNN

max number of bytes between GRIB messages in the file, the default is 500 and it is assumed
that you want to ignore junk (e.g., comm stuff) between data.

SPNNN = select parameter # NNN (e.g., -sp11 for temperature)
sINNN = select level # NNN (e.g., -sp500 to get 500 mb fields)
StNNN = select tau # NNN (e.g., -st12 to get t=12 forecasts)
The -s? options can be strung together to output a very narrow set of fields. For example to

only output the 500 mb u component at t=48 use:
Sp33 -91500 -st48

136

Special noteto NMC users
The once "standard" 81-byte header in an NMC GRIB file contained the string GRIB.

Unfortunately, the same string is part of the GRIB indicator section itself! Thus, an automatic scan
for GRIB to demark the start of the data will fail if the 81-byte header is present!

Thus, you have to know that avn flux files have the 81 byte header and run it as,
gribscan -h81
When in doubt (or failure) try -h81 -v.

Display options:
g = quick output to extract stuff GrADS gribmap cares about
g1 = one-line quick output
d = common delimited mode
v = verbose mode for diagnostics
bd = binary data section info
gv = use the NMC GRIB variable table to output the mnemonic, title and units from the standard
NMC table
gd = output info from the grid defn sec
S = Silent NO standard output

Some examples:
First,
cd /cray3_com_eta/PROD/er1.940829
Then,
1) A "quick" scan to get theinfo GrADS cares about:

gribscan -q -i eta.T12Z.PGrbF48 | grep 184 :
184, F ,135,108,100,0,100,0,1e+09, T ,1994,8,29,12,0,1,48,0, G ,104, BDTG, 94082912

184 - field #inthefile

F - field data

135 - param #

108 - level indicator

100 - level

0 - |1 byte 1 of level
100 - 12 byte 2 of level

0 - time range indicator
let09 - decimal scale factor
T - time datafollows
1994 - year

8 - month

29 - day

12 - hour

0 - min

1 - forecast time unit (hour)
48 - t=48 h forecast

137

G - grid param follows
104 - NMC grid #104
BDTG - Base date-time-group (yymmddhh) follows

2) Comma delimited output for parsing by things like awk:

gribscan -d -i eta.T12Z.PGrbF48 | grep 184 :
PDS,184,104,135,108,100,0,100,1994,8,29,12,0,1,48,0,0,1e+09

same as above but arranged differently
3) A full listing:

gribscan -d -gv -bd -gd -i eta.T12Z.PGrbF48 | grep 184 :
PDS,184,104,135,108,100,0,100,1994,8,29,12,0,1,48,0,0,1e+09,mconv,Horizontal moisture
divergence,[kg/kg/s],GDS,5,147,110,-139.475,90.755,0.354 ,-0.268,-105.000,33536.000,0,

1,0,BDS,12, -646.844,16170,4825059,26366 where
104 - gridid
param #135 - meonv,Horizontal moisture divergence,[kg/kg/s] (shown by -gv option)
BDS - binary data section
646.844 - ref value
16170 - # of points
4825059 - starting byte of the data
26366 - length of the grib message

N.B. not using the -d gives a fixed-column type outpuit...
4) Output aselected few fieldsin GRIB:
gribscan -og -sp135 -q -i eta.T12Z.PGrbF48 -o /wd2/wd20/wd20mf/tmp/eta.135

Writes out all GRIB message containing the 135 parameter to thefile
Iwd2/wd20/wd20mf/tmp/eta.135.grb. A subsequent gribscan on eta.135.grb :

gribscan -q -i eta.135.grb :
1, F ,135,108,100,0,100,0,1e+09, T ,1994,8,29,12,0,1,48,0, G ,104, BDTG, 94082912
2, F ,135,108,21860,85,100,0,1e+09, T ,1994,8,29,12,0,1,48,0, G ,104, BDTG, 94082912

Gribmap

When you set up a GrADS data descriptor file (e.g., the".ctl" file), you are defining, external to the
dataitself, a structure, -- how many variables, how timesin afile (or set of fileswith the template
option), the spatial dimension or "shape" of the variables, etc. The"GrADS' format (floats, either
64-bit or 32-bit IEEE depending on platform) is so simple that the relationship between the data
structure defined in the .ctl fileis calculated and stored in memory when the file is opened.

What makes GRIB so painful isthat thereis NO relationship between the GRIB data and the bigger
structural context implied by the .ctl file. Hence, the need for a utility which "maps"' between the
GRIB data and the GrADS data description.

How this actually happens in gribmap is that each field in the GRIB datafileisread and its
parameters (variable, level, time, etc.) are extracted and compared to ALL the variables at any of the
levelg/times/lUNITS in the .ctl file until a match (hopefully) is found.

The new features of gribmap allow restrictions to be placed on this matching process.

138

However, the first improvement in version 1.5.1 is that it supports both GRIBO and GRIBL1....
(version 0 and version 1).

Second the code now automatically scans for character string "GRIB" vice having to worry about
headers and what not (e.g., "junk” between the beginning and end of the GRIB message). That is
unless you are NMC and put (duh) GRIB in the header. The default scan limit is 1000 which can be
changed via the command line option:

SXXXXX Where xxxxx is the max number of bytes to search between records for GRIB.
To bypass the bytes before starting the scan process:

hxxx where xxx is the number of bytes, or for nmc:
hnmc

Other features invoked at the command line include:

vV nicer output to verify what you are attempting to map...

t0 amatch can only occur if the base time in the grib record is the same as the initial timein the
.ctl file. Thisisused to pull out aforecast sequence (0, 12, 24, ... ,72 h) starting a specific
time (e.g., 95010300)

fxxx where xxx isthe forecast timein hours. In this case, amatch occursonly if the
forecast time in the grib record matches xxx (hours). Thisis used to isolate a sequence of
forecasts, e.g., al the 120 h forecasts verifying during the period 00z1jan1995 to 1272jan1995
from the MRF ensemble runs.

0 ignoretheforecast timein setting up the match... Thisisuseful in reanaysis where some of
the diagnostic fields are "valid" at dightly different forecast time even though the share the
same starting time.

Here'sanicetrick. To verify what is mapped during the gribmap:
gribmap -v -t0 | grep MATCH all records matching will be displayed...

Another feature was added to map by the GRIB "time-range-indicator” as specified in the .ctl file.
Thiswas put in for handling NMC reanalysis data where the time-range-indicator distinguishes
between monthly mean variances and means.

Here's an example from reanalysis (flux.ctl):

dset /d2/reanal/nmc/output/grib.v02/month.flux.%y2% m2.grb
undef 1.0e20

dtypegrib

index AMlux.gmp

title NM C-NCAR reanalysis flux/gaussian grid quantities
optionsyrev template

xdef 192 linear 0 1.875

ydef 94 levels-88.54195 -86.65317 -84.75323 -82.85077 -80.94736
79.04349 -77.13935 -75.23505 -73.33066 -71.42619
69.52167 -67.61710 -65.71251 -63.80790 -61.90326
59.99861 -58.09395 -56.18928 -54.28460 -52.37991
50.47522 -48.57052 -46.66582 -44.76111 -42.85640
40.95169 -39.04697 -37.14225 -35.23753 -33.33281
3142809 -29.52336 -27.61863 -25.71391 -23.80917
2190444 -19.99971 -18.09498 -16.19025 -14.28551
12.38078 -10.47604 -8.571312 -6.666580 -4.761841

139

2.857109 -0.9523697 0.9523621 2.857101 4.761833
6.666565 8571304 1047604 12.38077 14.28551
16.19024 18.09497 19.99970 21.90443 23.80917
25.71389 27.61862 29.52335 31.42808 33.33280
35.23752 37.14224 39.04697 40.95168 42.85638
4476111 46.66580 4857051 50.47520 52.37990
5428459 56.18927 58.09395 59.99860 61.90326
63.80789 65.71249 67.61710 69.52165 71.42618
7333064 75.23505 77.13934 79.04347 80.94736
82.85077 84.75322 86.65315 88.54195
zdef 1linear 11
tdef 84 linear jan1985 1mo
vars 54
ps 0 1, 1, 0,113 Pressure[Pa]
tg 011, 1, 0,113 Ground Temperature[K]
tas 0 11,105, 2,113 2m Temperature [K]
tg300 0 11,111,300,113 Ground Temperature 300 cm down [K]
tgl0 0 11,112, 10,113 Ground Temperature 10 cm down[K]
tg200 0 11,112,2760,113 Ground Temperature 10-200 cm down [K]
tcll 0 11,213, 0,113 Cloud Temperature Low [K]
tclm 0 11,223, 0,113 Cloud Temperature Mid [K]
tclh 0 11,233, 0,113 Cloud Temperature High [K]
tasmax 0 15,105, 2,113 Maximum temperature [K]
tasmin 0 16,105, 2,113 Minimum temperature [K]
uas 0 33,105, 10,113 10m u wind [m/g]
vas 0 34,105, 10,113 10m v wind [m/g]
huss 0 51,105, 2,113 2m Specific humidity [kg/kg]
pr 059, 1, 0,113 Precipitation rate [kg/m**2/s]
sorm 0 65, 1, 0,113 Water equiv. of accum. snow depth [kg/m**2]
clt 0 71,200, 0,113 Total cloud cover [percent]
cll 0 71,214, 0,113 Total cloud cover [percent]
cm 0 71,224, 0,113 Total cloud cover [percent]
clh 0 71,234, 0,113 Total cloud cover [percent]
albds 0 84, 1, 0,113 Albedo [percent]
mrro 0 90, 1, 0,113 Runoff [kg/m**2]
sc 0 91, 1, 0,113 Iceconcentration (ice=1; noice=0) [1/0]
rss 0111, 1, 0,113 Net short wave radiation (surface) [W/m**2]
rls 0112, 1, 0,113 Net long waveradiation (surface) [W/m**2]
hfls 0121, 1, 0,113 Latent heat flux [W/m**2]
hfss 0122, 1, 0,113 Sensible heat flux [W/m**2]
tauu 0124, 1, 0,113 Zonal component of momentum flux [N/m**2]
tauv 0125, 1, 0,113 Meridional component of momentum flux [N/m** 2]
mrsol0 0 144,112, 10,113 Volumetric soil moisture content 10 cm down[fraction]
mrso200 0 144,112,2760,113 Volumetric soil moistur e content 10-200cm down [fraction]
pevpr 0145, 1, 0,113 Potential evaporation rate [w/m**/]
gwdu 0147, 1, 0,113 Zonal gravity wave stress [N/m**2]
gwdv 0148, 1, 0,113 Meridional gravity wave stress [N/m**2]
oflux 0155, 1, 0,113 Ground heat flux [W/m**2]
rsuscs 0160, 1, 0,113 Clear sky upward solar flux [W/m**2]
rsutcs 0160, 8, 0,113 Clear sky upward solar flux [W/m**2]

140

rsdtcs 0161, 1, 0,113 Clear sky downward solar flux [W/m**2]
rlutcs 0162, 8, 0,113 Clear sky upward long wave flux [W/m**2]
rldscs 0163, 1, 0,113 Clear sky downward long wave flux [W/m** 2]
crfss 0164, 1, 0,113 Cloud forcing net solar flux at sfc [W/m**2]
crfsa 0164,200, 0,113 Cloud forcing net solar flux in atmos [W/m** 2]
crfst 0164, 8, 0,113 Cloud forcing net solar flux at top [W/m**2]
crfls 0165, 1, 0,113 Cloud forcing net long wave flux at sfc [W/m**2]
crfla 0165,200, 0,113 Cloud forcing net long wave flux in atmos [W/m**2]
crflt 0165, 8, 0,113 Cloud forcing net long wave flux at top [W/m**2]
rsds 0204, 1, 0,113 Downward solar radiation flux at sfc [W/m**2]
rsdt 0204, 8, 0,113 Downward solar radiation flux at top [W/m**2]
rlds 0205, 1, 0,113 Downward long wave radiation flux at sfc[W/m**2]
rsus 0211, 1, 0,113 Upward solar radiation flux at sfc [W/m**2]
rsut 0211, 8, 0,113 Upward solar radiation flux at top [W/m**2]
rlus 0212, 1, 0,113 Upward long wave radiation flux at sfc [W/m**2]
rlut 0212, 8, 0,113 Upward long waveradiation flux at top [W/m**2]
prc 0214, 1, 0,113 Convective precipitation rate [kg/m**2/s]

endvars

The fourth units parameter in the variable description is 113 for a mean, for variances:

.uas 0 33,105, 10,118 10m u wind [m/g]

vas 0 34,105, 10,118 10m v wind [m/s]

huss 0 51,105, 2,118 2m Specific humidity [kg/kg]
endvars

If you don’t understand the time range indicator, then consult the GRIB Gospel according to John
Stackpole (that is; NMC Office Note 388).

141

Appendix C: Command line editing and history under UNIX
If the readline library compiles on your system then the default prompt will be ga-> as opposed to
ga>. Thisindicatesthat command line editing is active...

So far, the GNU free library "readline" has only been compiled on the Sun and recently under on the
SGils, so you may not have it on your system.

The library defaults to emacs mode but can be set up to run using vi syntax:
Here' salist of the commands which may typically be used:

ctrl-a go to beginning of line
ctrl-e goto end of line
ctrl-f go forward one char
ctrl-b go backward one char
ctrl-d delete the char

ctrl-p recall previousline
ctrl-n recall next line

ctrl-r reverse search

Y ou aso get file name completion using the tab key. If there is more than one option, then double
tab will list the available completions.

For example, suppose you are running grads on div40-2 at FNMOC and want to start looking for files
to open...

Type "open/ h" and get,
ga->open /h
and hit two tabs and get:
h home homel home2
then type "omel" and tab tab and get,

ga-> open /homel/

GCC bogus603 gnu igpops nmcobs roesserd
GRIB cstrey grads lost+found pacek tsai
Mosaic dh hamilton mendhall picardr witt
NEWDBS dolan hout nicholso qcops

then type "GR", tab to go to GRIB dir, followed by "d", tab to go to the dat dir and then "n", tab tab
gives,
ga-> open /homel/GRI B/dat/nogaps.25.
nogaps.25.95021600.grb nogaps.25.95021912.grb
nogaps.25.95021600.gribmap nogaps.25.95021912.gribmap
nogaps.25.95021612.anal.grb nogaps.25.anal.ctl
nogaps.25.95021612.ctl nogaps.25.anal.gribmap
nogaps.25.95021612.grb nogaps.25.Is.mask.ctl
nogaps.25.95021612.gribmap nogaps.25.Ismask.dat
nogaps.25.95021700.anal.grb
nogaps.25.95021700.ctl

142

and type "950217" to get

ga-> open /homel/GRI B/dat/nogaps.25.950217
nogaps.25.95021700.anal.grb nogaps.25.95021712.ctl
nogaps.25.95021700.ctl nogaps.25.95021712.grb
nogaps.25.95021700.grb nogaps.25.95021712.gribmap
nogaps.25.95021700.gribmap
nogaps.25.95021712.anal.grb

and finally open the 127 datawith 12.c, tab, return to open the file
nogaps.25.95021712.ctl

WARNING
There is no guarantee that these readline routines will always work, so the -h option has been added
to the invocation of GrADS to turn them off...
Thus,
grads-h
will give you the standard prompt,
ga>
as opposed to the command line editing prompt of

ga->

143

Appendix D: 32-bit IEEE floats on a Cray

Thisfacility allows 32-bit IEEE float data, created on the cray or a BIG ENDIAN workstation (e.g.,
sun or sgi), to be read on the Cray. Thus, one can create binary data on the cray and work with it on
any other platform (you have to add "big_endian" on the data descriptor file options card to work
with the data on alittle endian platform such as the PC). Implemented for NMC and FNMOC.

On the Cray use the following in the options card
option cray_32hit_ieee, e.g., to work with afloat data from a Sun on the Cray:
changethis .ctl file:

dset ~zg500.nmc_rnl.ll.sc.av.54.dat
titleNMC (VO2)reanalysis (T62L 28/ SSI)
undef 120
xdef 72 linear 05
ydef 46 linear -90 4
zdef 1 levels 500
tdef 4 linear jan79 3mo
varsl
zg 00 height [m]
endvars
to:
dset ~zg500.nmc_rnl.ll.sc.av.54.dat
titleNMC (VO2)reanalysis (T62L 28/ SSI)
optionscray_32bit_ieee
undef 120
xdef 72 linear 05
ydef 46 linear -90 4
zdef 1 levels 500
tdef 4 linear jan79 3mo
varsl
zg 00 height [m]
endvars

The Cray_32bit_iee has no effect on a 32-bit platform. Further, if fileis not opened if thereisan
invalid parameter in the options card.

144

Appendix E: Using GrADS on the IBM PC

Hardware considerations

GrADS for the PC operates in 32-bit mode and is compiled with the WATCOM C compiler, and
comes with the DOS extender DOSAGW.EXE. Thisversion requires a 386 or 486 machine with a
math coprocessor (note that the 486D X chip includes a math coprocessor).

The supplied 'grads.exe’ and 'gxtran.exe will operate at various screen resolutions, depending on
the setting of the environment variable GAVIDEO:

set gavideo=vga VGA, 16 color, 640x480 (the default)
set gavideo=ega EGA, 16 color, 640x350

set gavideo=vga256 VGA, 256 color, 640x480

set gavideo=svga SVGA, 256 color, 800x600

set gavideo=xvga SVGA, 256 color, 1024x768

Y ou should not specify resolutions above VGA resolution and colors above 16 colors unless your
graphics card and monitor are capable of handling such. One compiler vendor warns that it may be
possible to damage your monitor if it is not capable of the requested resol ution.

Some limitations of the PC version:

 does not support mouse point-and-click. The’q pos command returns -999 -999.

 does not support animation

» thetext and graphics windows are ' shared’, thus the text can overlay the graphics. Thiscan be
overcome to some extent by using one of the scripts:

stack.gs - alows you to enter commands until you enter the'flush’ command, then displays
the results of those commands without overlaid text.

frame.gs - 'separates’ the text and graphics windows by clearing the screen when a
display command is entered, issuing the display command, then waiting for you to press
enter before clearing the screen and returning to text mode.

Note that even though the text appears on the screen with the graphics, it will not appear on a
hardcopy plot were the frame printed.

Data sets from other platforms

Binary gridded data sets may be moved from any UNIX machine to the PC and displayed using
GrADS. The PC has adifferent byte order than most UNIX environments, such as Sun, IBM, Iris,
and CRAY |EEE. The PC has the same byte order asthe DECstations. Simply move the GrADS
format gridded data set in binary mode, then if needed put the OPTIONS BY TESWAPPED
keyword in the data descriptor file. See Chapter 4 for more info.

145

Printing on non-postscript printers

If you do not have a postscript printer available, you may want to obtain ghostscript, a utility for
printing postscript files on non-postscript printers. This utility is available from various anonymous
ftp sources and works extremely well.

Incorporating GrADS pictures into PC software

Ghostscript comes with a utility, ps2epsi, which will convert postscript files into encapsulated
postscript (.eps) suitable for importing into graphics software. Unfortunately, many of the graphics
import filters expect Adobe Illustrator compatible .eps files and the import fails. There are two
solutions to this problem. Y ou can convert your picture to a bitmap using Ghostscript or any screen-
capture utility. If you need to edit the picture, or re-sizeit, you need a program like Corel Draw 5
which imports postscript files directly (you do not need to use the Ghostscript utility). Thisworks
well for pictures without shading, for example, contour plots, and for shaded output to a colour
printer. Shaded pictures output to a Laserjet using greyscales, however, have not the same quality as
when output to a postscript printer.

The beta version 1.5x of GrADS comes with avery useful MS Windows utility, gv.exe. Thiswill
import GrADS metafiles directly and these can then be pasted into other Windows applications.
Although at afairly early stage of development, gv offers the best solution so far to printing and
editing your GrADS pictures on a monochrome laser printer.

146

Appendix F: GrADS-related network facilities

There are anumber of network sites offering various support facilitiesfor GrADS users. These are
listed in no particular order of importance, but a subscription to the listserver is highly recommended
as afirst step towards obtaining up-to-the-minute information, as well as help with particular
problems/techniques. Omissions are unintentional, these are the ones | know about! Please let me
know of any other useful sites by email (t.holt@uea.ac.uk).

Tom Holt, September 1995.

ftp Sites

The following ftp sites contain upgrades, documentation etc. on the various versions of GrADS for all
available platforms.

grads.iges.org

Thisisthe GrADS ftp site containing official documentation and executables from Brian Doty, the
author of GrADS. On connection, you are immediately in the main GrADS directory.

spritellnl.gov

This site contains documentation and executables for development versions of GrADS produced by

the GrADS devel opment team and Mike Fiorino. These are likely to change before being

incorporated into the latest “official” version of GrADS. Even so, there is a lot of very useful
information here and the versions of GrADS are very usable. This documentation is based on a
version of GrADS obtained from this site.

On connection, dod pub/fiorino/gradsto get to the GrADS stuff.

Listserver

listser v@icineca.cineca.it

The listserver automatically despatches messages to all subscribed users. Typically messages contain
a request for help and, hopefully, solutions to the request from users who have solved the problem.
Reference is frequently made to upgrades to GrADS and how to obtain them.

Using email, send a message to the above address containing just theehwsdbscribe for
details on how to register with the listserver.

Once subscribed, please read the important information regarding sending messages etc. very
carefully and store it in a safe place on your computer.

WWW Sites

There are a number of World Wide Web sites offering GrADS information.

The following two sites are on the COLA (Center for Ocean-Land-Atmosphere Studies) web server.

147

http://grads.iges.or g/grads/head.html
Isthe GrADS home page.

http://gr ads.iges.or g/home.htmi
Isthe COLA home page, containing GrADS-generated weather and climate maps. COLA are aso
attempting to provide linksto other GrADS-related servers.

http://dao.gsfc.nasa.gov/grads _listserv/INDEX.html
Maintains an archive of postingsto the GrADS listserver.

148

